{ "cells": [ { "cell_type": "code", "execution_count": 3, "id": "c8d9a033", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np \n", "import glob\n", "import os \n", "from datetime import date\n", "\n", "# Set the path to the folder containing CSV files\n", "folder_path = r\"C:\\Users\\joao.herculano\\Documents\\estudo cobertura alta 1107\\DRAFT\"\n", "\n", "# Pattern to match all CSV files\n", "csv_files = glob.glob(os.path.join(folder_path, '*.csv'))\n", "\n", "# Read and concat all CSVs\n", "df_draft = pd.concat([pd.read_csv(file) for file in csv_files], ignore_index=True)\n", "\n", "df_draft.shape\n", "\n", "today = date.today()\n", "\n", "df_draft = df_draft[df_draft['Dias sem venda']>40]\n", "\n", "df_draft = df_draft[df_draft['Estoque Atual']>0]\n", "\n", "df_draft['Total estoque'] = df_draft['Preço Sell In'] * df_draft['Estoque Atual']\n", "\n", "df_draft['Total trânsito'] = df_draft['Preço Sell In'] * df_draft['Estoque em Transito']\n", "\n", "df_draft.sort_values(by='Total estoque',ascending=False,inplace=True)\n", "\n", "df_draft['Promoção'] = np.where(~df_draft['Promoção Próximo Ciclo'].isna(),'SIM',np.where(~df_draft['Promoção Próximo Ciclo + 1'].isna(),'SIM','NÃO'))\n", "\n", "df_draft['Projeção Próximo Ciclo + 1'] = df_draft['Projeção Próximo Ciclo + 1']-df_draft['Projeção Próximo Ciclo']\n", "\n", "df_draft2 = df_draft\n", "\n", "\n", "df_draft2.to_excel(f'C:\\\\Users\\\\joao.herculano\\\\Documents\\\\estudo cobertura alta 1107\\\\draft{today}2.xlsx',index=False)\n" ] }, { "cell_type": "code", "execution_count": 38, "id": "4538e881", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "np.int64(1884)" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_draft['Promoção Próximo Ciclo'].isna().sum()" ] }, { "cell_type": "code", "execution_count": 41, "id": "71240beb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "np.int64(12480)" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_draft['Estoque Atual'].sum()" ] }, { "cell_type": "code", "execution_count": null, "id": "6cda199e", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.2" } }, "nbformat": 4, "nbformat_minor": 5 }