{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np \n", "import glob\n", "import os \n", "from openpyxl import load_workbook\n", "from openpyxl.styles import PatternFill, Font\n", "from datetime import datetime" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "hoje = datetime.today().strftime('%Y-%m-%d')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "#precisa ver duplicidade de desc e vendas irece." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "df_tabela = pd.read_excel(r\"C:\\Users\\joao.herculano\\GRUPO GINSENG\\Assistência Suprimentos - 2025\\SUPRIMENTOS\\DB_PROMOÇÕES\\BOTICARIO\\C15\\TABELA DE PEDIDOS\\Pedidos Semanais Especiais - BOT - 202515 (1).xlsx\")\n", "\n", "df_tabela = df_tabela[df_tabela['Ação revendedor'].notna() | df_tabela['Ação consumidor'].notna()]\n", "\n", "df_tabela = df_tabela[df_tabela['Região'] == 'NNE'] \n", "\n", "df_tabela = df_tabela[(df_tabela['Canal'] != 'Ecomm')]\n", "\n", "#df_tabela['Canal'] = np.where((df_tabela['Canal'] == \"Loja\") | (df_tabela['Canal'] == \"Todos\") | (df_tabela['Canal'] == \"Loja | VD\"),\"TODOS\",\"VD\")\n", "\n", "df_tabela = df_tabela[(df_tabela['Categoria'] != \"EMBALAGENS\") | (df_tabela['Categoria'] != \"SUPORTE À VENDA\")]\n", "\n", "#df_tabela = df_tabela[df_tabela['Tipo de pedido'] == 'Semanal']\n", "\n", "df_tabela = df_tabela[~df_tabela['Descrição'].str.contains('PRM')]\n", "\n", "df_tabela = df_tabela[df_tabela['Tipo de produto']!= 'EDICAO LIMITADA']\n", "\n", "df_tabela['Ação revendedor'] = np.where(df_tabela['Ação revendedor'].isna(),df_tabela['Ação consumidor'],df_tabela['Ação revendedor'])\n", "\n", "df_tabela['Percentual de desconto revendedor'] = np.where(df_tabela['Percentual de desconto revendedor'].isna(),df_tabela['Percentual de desconto consumidor'],df_tabela['Percentual de desconto revendedor'])\n", "\n", "df_tabela['MATCH'] = 1\n", "\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\joao.herculano\\AppData\\Local\\Temp\\ipykernel_2580\\2225685327.py:39: UserWarning: pandas only supports SQLAlchemy connectable (engine/connection) or database string URI or sqlite3 DBAPI2 connection. Other DBAPI2 objects are not tested. Please consider using SQLAlchemy.\n", " dfi = pd.read_sql(query, conn)\n" ] } ], "source": [ "import pyodbc\n", "import configparser\n", "\n", "#query de vendas por ciclo\n", "\n", "config = configparser.ConfigParser()\n", "config.read(r\"C:\\Users\\joao.herculano\\Documents\\Enviador de email\\credenciais.ini\")\n", "\n", "conn = pyodbc.connect(\n", " f\"DRIVER={{SQL Server}};\"\n", " f\"SERVER={config['banco']['host']},1433;\"\n", " f\"DATABASE=GINSENG;\"\n", " f\"UID={config['banco']['user']};\"\n", " f\"PWD={config['banco']['password']}\"\n", ")\n", "\n", "query = f'''\n", "SELECT \n", " B.PDV, \n", " B.SKU,\n", " bd.SKU2, \n", " COALESCE(bd.SKU2, b.SKU) AS SKU_FINAL,\n", " B.DESCRICAO,\n", " SUM(CAST(b.VENDAS AS DECIMAL(18,2))) AS VENDAS_CICLO,\n", " C.Ciclo\n", "FROM base_vendas_bi b\n", "INNER JOIN ciclos_data_2025 c \n", " ON CAST(b.[DATA] AS DATE) = CONVERT(DATE, c.[Date], 103) AND C.MARCA = 'BOT'\n", "LEFT JOIN base_depara bd on b.SKU = bd.SKU \n", "WHERE CAST(b.[DATA] AS DATE) >= DATEADD(YEAR, -1, GETDATE())\n", "GROUP BY\n", " B.PDV, \n", " B.SKU,\n", " bd.SKU2,\n", " B.DESCRICAO,\n", " C.Ciclo\n", "HAVING SUM(CAST(b.VENDAS AS DECIMAL(18,2))) > 0\n", "'''\n", "dfi = pd.read_sql(query, conn)\n", "conn.close()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "dfi['SKU2'] = dfi['SKU2'].fillna(\"-\")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PDVSKUSKU2SKU_FINALDESCRICAOVENDAS_CICLOCiclo
02099879437-79437QDB GLIT SLT P/OLHO ROSELITTER 1g RPCK1.0C202413
1456051226-51226CBEM SAB BARRA NUVEM V5 2x80g30.0C202413
22127748290-48290NSPA DES COL BDY SPLSH AMEI 200ml V23.0C202414
32370156810-56810MATCH COND SCIENCE CRESCIMENTO V2 280ml2.0C202505
4569956027-56027MEN SAB BARRA 2x90g37.0C202506
\n", "
" ], "text/plain": [ " PDV SKU SKU2 SKU_FINAL DESCRICAO \\\n", "0 20998 79437 - 79437 QDB GLIT SLT P/OLHO ROSELITTER 1g RPCK \n", "1 4560 51226 - 51226 CBEM SAB BARRA NUVEM V5 2x80g \n", "2 21277 48290 - 48290 NSPA DES COL BDY SPLSH AMEI 200ml V2 \n", "3 23701 56810 - 56810 MATCH COND SCIENCE CRESCIMENTO V2 280ml \n", "4 5699 56027 - 56027 MEN SAB BARRA 2x90g \n", "\n", " VENDAS_CICLO Ciclo \n", "0 1.0 C202413 \n", "1 30.0 C202413 \n", "2 3.0 C202414 \n", "3 2.0 C202505 \n", "4 37.0 C202506 " ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dfi = dfi[dfi['SKU2'] == \"-\"]\n", "\n", "dfi.head()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PDVSKU_FINALDESCRICAOC202412C202413C202414C202415C202416C202417C202501...C202503C202504C202505C202506C202507C202508C202509C202510C202511C202512
0125221004FLORATTA DES COL MY BLUE 75ml0.015.02.03.056.06.01.0...1.05.012.07.02.00.01.02.05.02.0
1125221080INTENSE GLOS LAB BUBBAL TUT/FRUT 5ml0.00.04.00.010.02.02.0...2.03.01.07.017.00.00.00.00.00.0
2125221296PMPCK THE BLEND DES ANTIT AER 2x75g0.01.03.03.02.00.00.0...0.00.00.00.00.00.00.00.00.00.0
3125221302PMPCK LILY DES ANTIT AER 2x75g1.04.03.05.06.00.00.0...0.00.00.03.04.00.04.04.02.01.0
4125221314PMPCK ZAAD DES ANTIT AER 2x75g0.02.03.01.01.00.00.0...0.00.00.00.00.00.00.00.01.01.0
\n", "

5 rows × 21 columns

\n", "
" ], "text/plain": [ " PDV SKU_FINAL DESCRICAO C202412 C202413 \\\n", "0 12522 1004 FLORATTA DES COL MY BLUE 75ml 0.0 15.0 \n", "1 12522 1080 INTENSE GLOS LAB BUBBAL TUT/FRUT 5ml 0.0 0.0 \n", "2 12522 1296 PMPCK THE BLEND DES ANTIT AER 2x75g 0.0 1.0 \n", "3 12522 1302 PMPCK LILY DES ANTIT AER 2x75g 1.0 4.0 \n", "4 12522 1314 PMPCK ZAAD DES ANTIT AER 2x75g 0.0 2.0 \n", "\n", " C202414 C202415 C202416 C202417 C202501 ... C202503 C202504 \\\n", "0 2.0 3.0 56.0 6.0 1.0 ... 1.0 5.0 \n", "1 4.0 0.0 10.0 2.0 2.0 ... 2.0 3.0 \n", "2 3.0 3.0 2.0 0.0 0.0 ... 0.0 0.0 \n", "3 3.0 5.0 6.0 0.0 0.0 ... 0.0 0.0 \n", "4 3.0 1.0 1.0 0.0 0.0 ... 0.0 0.0 \n", "\n", " C202505 C202506 C202507 C202508 C202509 C202510 C202511 C202512 \n", "0 12.0 7.0 2.0 0.0 1.0 2.0 5.0 2.0 \n", "1 1.0 7.0 17.0 0.0 0.0 0.0 0.0 0.0 \n", "2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", "3 0.0 3.0 4.0 0.0 4.0 4.0 2.0 1.0 \n", "4 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 \n", "\n", "[5 rows x 21 columns]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\n", "# 1. Agrupamento\n", "df_agrupado = dfi.groupby(['PDV', 'SKU_FINAL', 'DESCRICAO', 'Ciclo'], as_index=False)['VENDAS_CICLO'].sum()\n", "\n", "# 2. Pivotar o DataFrame\n", "df_pivotado = df_agrupado.pivot_table(\n", " index=['PDV', 'SKU_FINAL', 'DESCRICAO'],\n", " columns='Ciclo',\n", " values='VENDAS_CICLO',\n", " fill_value=0 # Substitui NaN por 0\n", ")\n", "\n", "# 3. Resetar o índice para deixar como DataFrame normal (opcional)\n", "df_pivotadowawa = df_pivotado.reset_index()\n", "\n", "# 4. (Opcional) Renomear colunas com prefixo \"Ciclo_\"\n", "df_pivotadowawa.columns.name = None\n", "df_pivotadowawa = df_pivotadowawa.rename(columns=lambda x: f'Ciclo_{x}' if isinstance(x, (int, str)) and str(x).isdigit() else x)\n", "\n", "# Resultado final\n", "df_pivotadowawa.head()\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PDVSKU_FINALDESCRICAOC202412C202413C202414C202415C202416C202417C202501...C202503C202504C202505C202506C202507C202508C202509C202510C202511C202512
\n", "

0 rows × 21 columns

\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [PDV, SKU_FINAL, DESCRICAO, C202412, C202413, C202414, C202415, C202416, C202417, C202501, C202502, C202503, C202504, C202505, C202506, C202507, C202508, C202509, C202510, C202511, C202512]\n", "Index: []\n", "\n", "[0 rows x 21 columns]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_pivotadowawa[(df_pivotadowawa['SKU_FINAL'] == '1634') & (df_pivotadowawa['PDV'] == '20998')]" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "\n", "\n", "df_pdv = pd.read_excel(r\"C:\\Users\\joao.herculano\\Documents\\PDV_ATT.xlsx\")\n", "\n", "df_pdv_origi = pd.read_excel(r\"C:\\Users\\joao.herculano\\Documents\\PDV_ATT.xlsx\")\n", "\n", "df_pdv = df_pdv.rename(columns={'DESCRIÇÃO':'DESCRIÇÃO PDV'})\n", "\n", "df_pdv = df_pdv[df_pdv['GESTÃO']!=\"Inativa\"]\n", "\n", "df_pdv = df_pdv.drop(columns=['REGIÃO', 'ESTADO','CIDADE','GESTÃO', 'STATUS'])\n", "\n", "df_pdv = df_pdv[df_pdv['CANAL']!='MTZ']\n", "\n", "#df_pdv['CANAL'] = np.where((df_pdv['CANAL']=='LJ')|(df_pdv['CANAL']=='HIB')|(df_pdv['CANAL']=='CD'),'TODOS','VD')\n", "\n", "df_pdv['MATCH'] = 1\n", "\n", "df_pdv = df_pdv[(df_pdv['PDV']!=910291)&(df_pdv['PDV']!=910173)]\n", "\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PDVCANALDESCRIÇÃO PDVPDV DESCUFMARCAANALISTASUPERVISORMATCH
4321007LJMOREIRA 221007-MOREIRA 2ALO BOTICARIOLUANMaxwell Vieira1
\n", "
" ], "text/plain": [ " PDV CANAL DESCRIÇÃO PDV PDV DESC UF MARCA ANALISTA \\\n", "43 21007 LJ MOREIRA 2 21007-MOREIRA 2 AL O BOTICARIO LUAN \n", "\n", " SUPERVISOR MATCH \n", "43 Maxwell Vieira 1 " ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_pdv[df_pdv['PDV']==21007]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "df_pdv = df_pdv.drop(columns=['PDV DESC'])" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\joao.herculano\\AppData\\Local\\Temp\\ipykernel_2580\\268247862.py:25: UserWarning: pandas only supports SQLAlchemy connectable (engine/connection) or database string URI or sqlite3 DBAPI2 connection. Other DBAPI2 objects are not tested. Please consider using SQLAlchemy.\n", " df_draft_ = pd.read_sql(query_est_draft, conn)\n" ] } ], "source": [ "conn = pyodbc.connect(\n", " f\"DRIVER={{SQL Server}};\"\n", " f\"SERVER={config['banco']['host']},1433;\"\n", " f\"DATABASE=GINSENG;\"\n", " f\"UID={config['banco']['user']};\"\n", " f\"PWD={config['banco']['password']}\"\n", ")\n", "\n", "query_est_draft = f'''\n", "select em.PDV ,\n", "COALESCE(em.SKU_PARA , em.SKU) as SKU,\n", "em.DESCRICAO,\n", "d.salescurve as curva,\n", "d.codcategory as categoria,\n", "d.nextcycleprojection as proj_mar\n", ",d.secondtonextcycleprojection as 'proj_mar+1',\n", "em.[ESTOQUE ATUAL],em.[ESTOQUE EM TRANSITO],\n", "em.[PEDIDO PENDENTE],\n", "em.[DDV PREVISTO] ,\n", "d.pricesellin as 'preço'\n", "from estoque_mar em \n", "left join draft d on d.code = COALESCE(em.SKU_PARA , em.SKU) and d.loja_id = em.PDV \n", "where em.ORIGEM = 'BOT'\n", "'''\n", "df_draft_ = pd.read_sql(query_est_draft, conn)\n", "conn.close()\n", "\n", "#FALTA ATUALIZAR QUERY" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "df_draft = df_draft_" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PDVSKUDESCRICAOcurvacategoriaproj_marproj_mar+1ESTOQUE ATUALESTOQUE EM TRANSITOPEDIDO PENDENTEDDV PREVISTOpreço
128590242931634NSPA GEL ESF CPO MORANGO RUBY 175GNoneNoneNaNNaN3000NaN
128840212781634NSPA GEL ESF CPO MORANGO RUBY 175GNoneNoneNaNNaN2000NaN
128956128261634NSPA GEL ESF CPO MORANGO RUBY 175GNoneNoneNaNNaN3000NaN
12936145601634NSPA GEL ESF CPO MORANGO RUBY 175GNoneNoneNaNNaN5000NaN
12945156991634NSPA GEL ESF CPO MORANGO RUBY 175GNoneNoneNaNNaN4000,05NaN
.......................................
337558216471634NSPA GEL ESF CPO MORANGO RUBY 175GNoneNoneNaNNaN4000NaN
345348200091634NSPA GEL ESF CPO MORANGO RUBY 175GNoneNoneNaNNaN10000NaN
349112209681634NSPA GEL ESF CPO MORANGO RUBY 175GNoneNoneNaNNaN8000NaN
358656128301634NSPA GEL ESF CPO MORANGO RUBY 175GNoneNoneNaNNaN5000NaN
359288209971634NSPA GEL ESF CPO MORANGO RUBY 175GNoneNoneNaNNaN3000NaN
\n", "

73 rows × 12 columns

\n", "
" ], "text/plain": [ " PDV SKU DESCRICAO curva categoria \\\n", "128590 24293 1634 NSPA GEL ESF CPO MORANGO RUBY 175G None None \n", "128840 21278 1634 NSPA GEL ESF CPO MORANGO RUBY 175G None None \n", "128956 12826 1634 NSPA GEL ESF CPO MORANGO RUBY 175G None None \n", "129361 4560 1634 NSPA GEL ESF CPO MORANGO RUBY 175G None None \n", "129451 5699 1634 NSPA GEL ESF CPO MORANGO RUBY 175G None None \n", "... ... ... ... ... ... \n", "337558 21647 1634 NSPA GEL ESF CPO MORANGO RUBY 175G None None \n", "345348 20009 1634 NSPA GEL ESF CPO MORANGO RUBY 175G None None \n", "349112 20968 1634 NSPA GEL ESF CPO MORANGO RUBY 175G None None \n", "358656 12830 1634 NSPA GEL ESF CPO MORANGO RUBY 175G None None \n", "359288 20997 1634 NSPA GEL ESF CPO MORANGO RUBY 175G None None \n", "\n", " proj_mar proj_mar+1 ESTOQUE ATUAL ESTOQUE EM TRANSITO \\\n", "128590 NaN NaN 3 0 \n", "128840 NaN NaN 2 0 \n", "128956 NaN NaN 3 0 \n", "129361 NaN NaN 5 0 \n", "129451 NaN NaN 4 0 \n", "... ... ... ... ... \n", "337558 NaN NaN 4 0 \n", "345348 NaN NaN 10 0 \n", "349112 NaN NaN 8 0 \n", "358656 NaN NaN 5 0 \n", "359288 NaN NaN 3 0 \n", "\n", " PEDIDO PENDENTE DDV PREVISTO preço \n", "128590 0 0 NaN \n", "128840 0 0 NaN \n", "128956 0 0 NaN \n", "129361 0 0 NaN \n", "129451 0 0,05 NaN \n", "... ... ... ... \n", "337558 0 0 NaN \n", "345348 0 0 NaN \n", "349112 0 0 NaN \n", "358656 0 0 NaN \n", "359288 0 0 NaN \n", "\n", "[73 rows x 12 columns]" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_draft[df_draft['SKU']=='1634']" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(350945, 12)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_draft = df_draft[~df_draft['DESCRICAO'].str.contains('OUI', na=False)]\n", "\n", "df_draft.shape" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\joao.herculano\\AppData\\Local\\Temp\\ipykernel_2580\\1765304903.py:1: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df_draft['ESTOQUE ATUAL'] = df_draft['ESTOQUE ATUAL'].astype(float)\n", "C:\\Users\\joao.herculano\\AppData\\Local\\Temp\\ipykernel_2580\\1765304903.py:3: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df_draft['ESTOQUE EM TRANSITO'] = df_draft['ESTOQUE EM TRANSITO'].astype(float)\n", "C:\\Users\\joao.herculano\\AppData\\Local\\Temp\\ipykernel_2580\\1765304903.py:5: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df_draft['PEDIDO PENDENTE'] = df_draft['PEDIDO PENDENTE'].astype(float)\n" ] }, { "data": { "text/plain": [ "PDV object\n", "SKU object\n", "DESCRICAO object\n", "curva object\n", "categoria object\n", "proj_mar float64\n", "proj_mar+1 float64\n", "ESTOQUE ATUAL float64\n", "ESTOQUE EM TRANSITO float64\n", "PEDIDO PENDENTE float64\n", "DDV PREVISTO object\n", "preço float64\n", "dtype: object" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_draft['ESTOQUE ATUAL'] = df_draft['ESTOQUE ATUAL'].astype(float)\n", "\n", "df_draft['ESTOQUE EM TRANSITO'] = df_draft['ESTOQUE EM TRANSITO'].astype(float)\n", "\n", "df_draft['PEDIDO PENDENTE'] = df_draft['PEDIDO PENDENTE'].astype(float)\n", "\n", "df_draft.dtypes" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\joao.herculano\\AppData\\Local\\Temp\\ipykernel_2580\\1952797845.py:1: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df_draft['DDV PREVISTO'] = df_draft['DDV PREVISTO'].str.replace(',','.')\n", "C:\\Users\\joao.herculano\\AppData\\Local\\Temp\\ipykernel_2580\\1952797845.py:3: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df_draft['DDV PREVISTO'] = df_draft['DDV PREVISTO'].astype(float)\n", "C:\\Users\\joao.herculano\\AppData\\Local\\Temp\\ipykernel_2580\\1952797845.py:5: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df_draft['DDV PREVISTO'] = df_draft['DDV PREVISTO'].fillna(0)\n" ] } ], "source": [ "df_draft['DDV PREVISTO'] = df_draft['DDV PREVISTO'].str.replace(',','.')\n", "\n", "df_draft['DDV PREVISTO'] = df_draft['DDV PREVISTO'].astype(float)\n", "\n", "df_draft['DDV PREVISTO'] = df_draft['DDV PREVISTO'].fillna(0)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "df_draft = df_draft.groupby(['PDV','SKU','curva','categoria'])[['proj_mar','proj_mar+1','ESTOQUE ATUAL','ESTOQUE EM TRANSITO','PEDIDO PENDENTE','DDV PREVISTO','preço']].max().reset_index()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "df_tabela = df_tabela.drop_duplicates()" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "df_bi_preco = pd.read_excel(r\"C:\\Users\\joao.herculano\\GRUPO GINSENG\\Assistência Suprimentos - 2025\\SUPRIMENTOS\\DB_PROMOÇÕES\\BOTICARIO\\C13\\preço BI\\TABELA DE PREÇOS (2).xlsx\")\n", "\n", "df_bi_preco = df_bi_preco.drop(columns=['Tipo Preço','CATEGORIA','LINHA','MARCA'])\n", "\n" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "df_pivotadowawa['SKU_FINAL'] = df_pivotadowawa['SKU_FINAL'].astype('str')" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 1004\n", "1 1080\n", "2 1296\n", "3 1302\n", "4 1314\n", "Name: SKU_FINAL, dtype: object" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_pivotadowawa['SKU_FINAL'] = df_pivotadowawa['SKU_FINAL'].astype(str)\n", "\n", "df_pivotadowawa['SKU_FINAL'].head()" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PDVSKUcurvacategoriaproj_marproj_mar+1ESTOQUE ATUALESTOQUE EM TRANSITOPEDIDO PENDENTEDDV PREVISTOpreço
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [PDV, SKU, curva, categoria, proj_mar, proj_mar+1, ESTOQUE ATUAL, ESTOQUE EM TRANSITO, PEDIDO PENDENTE, DDV PREVISTO, preço]\n", "Index: []" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_draft[df_draft['SKU']=='1634']" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "df_draft = pd.merge(df_draft,df_pivotadowawa,left_on=['PDV','SKU'],right_on=['PDV','SKU_FINAL'],how='inner')" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PDVSKUcurvacategoriaproj_marproj_mar+1ESTOQUE ATUALESTOQUE EM TRANSITOPEDIDO PENDENTEDDV PREVISTO...C202503C202504C202505C202506C202507C202508C202509C202510C202511C202512
\n", "

0 rows × 31 columns

\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [PDV, SKU, curva, categoria, proj_mar, proj_mar+1, ESTOQUE ATUAL, ESTOQUE EM TRANSITO, PEDIDO PENDENTE, DDV PREVISTO, preço, SKU_FINAL, DESCRICAO, C202412, C202413, C202414, C202415, C202416, C202417, C202501, C202502, C202503, C202504, C202505, C202506, C202507, C202508, C202509, C202510, C202511, C202512]\n", "Index: []\n", "\n", "[0 rows x 31 columns]" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_draft[df_draft['SKU']=='1634']" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(34265, 31)" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final = pd.merge(left=df_tabela,right=df_pdv,on='MATCH',how='left')\n", "\n", "df_final = df_final.drop_duplicates()\n", "\n", "df_final.shape" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "PDV\n", "12522 445\n", "12817 445\n", "12818 445\n", "12820 445\n", "12823 445\n", " ... \n", "24257 445\n", "24268 445\n", "24269 445\n", "24293 445\n", "23813 445\n", "Name: count, Length: 77, dtype: int64" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final['PDV'].value_counts()" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PDVSKUcurvacategoriaproj_marproj_mar+1ESTOQUE ATUALESTOQUE EM TRANSITOPEDIDO PENDENTEDDV PREVISTO...C202503C202504C202505C202506C202507C202508C202509C202510C202511C202512
74681354652627BCUIDADOS FACIAIS2.02.00.02.00.00.09...5.00.00.00.00.00.00.00.00.00.0
74682354652627BCUIDADOS FACIAIS2.02.00.02.00.00.09...0.00.04.03.00.03.04.01.03.03.0
\n", "

2 rows × 31 columns

\n", "
" ], "text/plain": [ " PDV SKU curva categoria proj_mar proj_mar+1 \\\n", "74681 3546 52627 B CUIDADOS FACIAIS 2.0 2.0 \n", "74682 3546 52627 B CUIDADOS FACIAIS 2.0 2.0 \n", "\n", " ESTOQUE ATUAL ESTOQUE EM TRANSITO PEDIDO PENDENTE DDV PREVISTO ... \\\n", "74681 0.0 2.0 0.0 0.09 ... \n", "74682 0.0 2.0 0.0 0.09 ... \n", "\n", " C202503 C202504 C202505 C202506 C202507 C202508 C202509 C202510 \\\n", "74681 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", "74682 0.0 0.0 4.0 3.0 0.0 3.0 4.0 1.0 \n", "\n", " C202511 C202512 \n", "74681 0.0 0.0 \n", "74682 3.0 3.0 \n", "\n", "[2 rows x 31 columns]" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_draft[(df_draft['SKU'] == '52627') & (df_draft['PDV'] == '3546') ].head()" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['PDV', 'SKU', 'curva', 'categoria', 'proj_mar', 'proj_mar+1',\n", " 'ESTOQUE ATUAL', 'ESTOQUE EM TRANSITO', 'PEDIDO PENDENTE',\n", " 'DDV PREVISTO', 'preço', 'SKU_FINAL', 'C202412', 'C202413', 'C202414',\n", " 'C202415', 'C202416', 'C202417', 'C202501', 'C202502', 'C202503',\n", " 'C202504', 'C202505', 'C202506', 'C202507', 'C202508', 'C202509',\n", " 'C202510', 'C202511', 'C202512'],\n", " dtype='object')" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_draft = df_draft.drop(columns='DESCRICAO')\n", "\n", "df_draft.columns" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "PDV\n", "20998 1209\n", "23711 1190\n", "20997 1182\n", "20993 1172\n", "20996 1161\n", " ... \n", "24269 490\n", "24253 472\n", "24268 452\n", "24254 439\n", "24258 336\n", "Name: count, Length: 75, dtype: int64" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "numericos = df_draft.columns[-18:]\n", "\n", "chaves = [col for col in df_draft.columns if col not in numericos]\n", "\n", "# 2. Fazer o groupby\n", "df_draft_agg = (\n", " df_draft\n", " .groupby(chaves, as_index=False)[numericos]\n", " .max()\n", ")\n", "\n", "df_draft_agg['PDV'].value_counts()" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PDVSKUcurvacategoriaproj_marproj_mar+1ESTOQUE ATUALESTOQUE EM TRANSITOPEDIDO PENDENTEDDV PREVISTO...C202503C202504C202505C202506C202507C202508C202509C202510C202511C202512
\n", "

0 rows × 30 columns

\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [PDV, SKU, curva, categoria, proj_mar, proj_mar+1, ESTOQUE ATUAL, ESTOQUE EM TRANSITO, PEDIDO PENDENTE, DDV PREVISTO, preço, SKU_FINAL, C202412, C202413, C202414, C202415, C202416, C202417, C202501, C202502, C202503, C202504, C202505, C202506, C202507, C202508, C202509, C202510, C202511, C202512]\n", "Index: []\n", "\n", "[0 rows x 30 columns]" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_draft[df_draft['SKU']==1634]" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "df_draft1 = df_draft_agg" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['PDV', 'SKU', 'curva', 'categoria', 'proj_mar', 'proj_mar+1',\n", " 'ESTOQUE ATUAL', 'ESTOQUE EM TRANSITO', 'PEDIDO PENDENTE',\n", " 'DDV PREVISTO', 'preço', 'SKU_FINAL', 'C202412', 'C202413', 'C202414',\n", " 'C202415', 'C202416', 'C202417', 'C202501', 'C202502', 'C202503',\n", " 'C202504', 'C202505', 'C202506', 'C202507', 'C202508', 'C202509',\n", " 'C202510', 'C202511', 'C202512'],\n", " dtype='object')" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_draft1.columns" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "df_draft1.to_clipboard()" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(34265, 60)" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final['PDV'] = df_final['PDV'].astype('str')\n", "df_final['Código'] = df_final['Código'].astype('str')\n", "\n", "\n", "df_final = pd.merge(left=df_final,right=df_draft1,left_on=['PDV','Código'],right_on=['PDV','SKU'],how='left')\n", "df_final.shape" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CicloRegiãoCanalCódigoDescriçãoIAFTipo de pedidoFocoUnidade de negócioMarca...C202503C202504C202505C202506C202507C202508C202509C202510C202511C202512
12936202515NNELoja1634NSPA GEL ESF CPO MORANGO RUBY 175GNãoEspecialNãoBOTNATIVA SPA...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
12937202515NNELoja1634NSPA GEL ESF CPO MORANGO RUBY 175GNãoEspecialNãoBOTNATIVA SPA...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
12938202515NNELoja1634NSPA GEL ESF CPO MORANGO RUBY 175GNãoEspecialNãoBOTNATIVA SPA...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
12939202515NNELoja1634NSPA GEL ESF CPO MORANGO RUBY 175GNãoEspecialNãoBOTNATIVA SPA...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
12940202515NNELoja1634NSPA GEL ESF CPO MORANGO RUBY 175GNãoEspecialNãoBOTNATIVA SPA...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", "

5 rows × 60 columns

\n", "
" ], "text/plain": [ " Ciclo Região Canal Código Descrição IAF \\\n", "12936 202515 NNE Loja 1634 NSPA GEL ESF CPO MORANGO RUBY 175G Não \n", "12937 202515 NNE Loja 1634 NSPA GEL ESF CPO MORANGO RUBY 175G Não \n", "12938 202515 NNE Loja 1634 NSPA GEL ESF CPO MORANGO RUBY 175G Não \n", "12939 202515 NNE Loja 1634 NSPA GEL ESF CPO MORANGO RUBY 175G Não \n", "12940 202515 NNE Loja 1634 NSPA GEL ESF CPO MORANGO RUBY 175G Não \n", "\n", " Tipo de pedido Foco Unidade de negócio Marca ... C202503 C202504 \\\n", "12936 Especial Não BOT NATIVA SPA ... NaN NaN \n", "12937 Especial Não BOT NATIVA SPA ... NaN NaN \n", "12938 Especial Não BOT NATIVA SPA ... NaN NaN \n", "12939 Especial Não BOT NATIVA SPA ... NaN NaN \n", "12940 Especial Não BOT NATIVA SPA ... NaN NaN \n", "\n", " C202505 C202506 C202507 C202508 C202509 C202510 C202511 C202512 \n", "12936 NaN NaN NaN NaN NaN NaN NaN NaN \n", "12937 NaN NaN NaN NaN NaN NaN NaN NaN \n", "12938 NaN NaN NaN NaN NaN NaN NaN NaN \n", "12939 NaN NaN NaN NaN NaN NaN NaN NaN \n", "12940 NaN NaN NaN NaN NaN NaN NaN NaN \n", "\n", "[5 rows x 60 columns]" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final[df_final['Código']=='1634'].head()" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "PDV\n", "12522 445\n", "12817 445\n", "12818 445\n", "12820 445\n", "12823 445\n", " ... \n", "24257 445\n", "24268 445\n", "24269 445\n", "24293 445\n", "23813 445\n", "Name: count, Length: 77, dtype: int64" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final['PDV'].value_counts()" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "df_final = df_final.drop(columns=['Sortimento P', 'Sortimento M',\n", " 'Sortimento G','MARCA'])" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "calendario = pd.read_excel(r\"C:\\Users\\joao.herculano\\GRUPO GINSENG\\Assistência Suprimentos - 2025\\SUPRIMENTOS\\BD_LANÇAMENTOS\\BASE DE DADOS LANÇAMENTO\\BOT\\CICLO 9\\CALENDARIO_CICLO\\Ciclo_Expandido_com_Datas.xlsx\")\n" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CicloINICIO CICLOFIM CICLODURAÇÃODateNUM_CICLOANO_CICLOCICLOMAIS2dias_ate_inicio
2367C2025142025-09-222025-10-12212025-09-2214C2025C20251625
\n", "
" ], "text/plain": [ " Ciclo INICIO CICLO FIM CICLO DURAÇÃO Date NUM_CICLO \\\n", "2367 C202514 2025-09-22 2025-10-12 21 2025-09-22 14 \n", "\n", " ANO_CICLO CICLOMAIS2 dias_ate_inicio \n", "2367 C2025 C202516 25 " ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "calendario['Date'] = pd.to_datetime(calendario['Date'])\n", "\n", "# Get today (normalized to midnight)\n", "today = pd.Timestamp(\"today\").normalize()\n", "\n", "calendario['NUM_CICLO'] = calendario['Ciclo'].str[-2:].astype(int)\n", "calendario['ANO_CICLO'] = calendario['Ciclo'].str[0:5]\n", "\n", "\n", "calendario = calendario[calendario['MARCA'] == \"BOTICARIO\"]\n", "\n", "calendario = calendario.drop(columns='MARCA')\n", "\n", "calendario['CICLOMAIS2'] = calendario['ANO_CICLO'].astype(str) + (calendario['NUM_CICLO'].astype(int) + 2).astype(str).str.zfill(2) # >>>>>>>>> MUDAR PRA CICLO CORRETO \n", "\n", "ciclo_mais2 = calendario[calendario['Date'].dt.normalize() == today]['CICLOMAIS2'].iloc[0]\n", "\n", "\n", "# Filter rows where date matches today\n", "filtered_calendario = calendario[calendario['Ciclo'] == ciclo_mais2][:1]\n", "\n", "\n", "filtered_calendario['dias_ate_inicio'] = filtered_calendario['INICIO CICLO'].iloc[0] - today\n", "\n", "filtered_calendario['dias_ate_inicio'] = filtered_calendario['dias_ate_inicio'].dt.days.astype(int)\n", "\n", "filtered_calendario\n" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "filtered_calendario['MATCH'] = 1" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "df_pdv['UF'] = np.where(df_pdv['UF'] == 'VDC','BA',df_pdv['UF'])" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "df_draft['PDV'] = df_draft['PDV'].astype(str)" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(34265, 61)" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final = pd.merge(left=df_final, right=filtered_calendario[['Ciclo','INICIO CICLO','FIM CICLO','DURAÇÃO','MATCH','dias_ate_inicio']], on='MATCH',how='left')\n", "df_final.shape" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [], "source": [ "df_final['Código'] = df_final['Código'].astype('Int64') \n", "df_final['PDV'] = df_final['PDV'].astype('Int64') " ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SKU1SKU2DescriçãoUFPCPVchave sku2chave sku1
08491884918ESTJ BOTI CALENDARIO ADVENTO NAT/24AL393.701300.0AL84918AL84918
18491884918ESTJ BOTI CALENDARIO ADVENTO NAT/24BA436.731300.0BA84918BA84918
28491884918ESTJ BOTI CALENDARIO ADVENTO NAT/24SE379.941300.0SE84918SE84918
35423054230MALBEC DES COL 20 ANOS 100mlAL138.54499.9AL54230AL54230
45423054230MALBEC DES COL 20 ANOS 100mlBA148.66499.9BA54230BA54230
\n", "
" ], "text/plain": [ " SKU1 SKU2 Descrição UF PC PV \\\n", "0 84918 84918 ESTJ BOTI CALENDARIO ADVENTO NAT/24 AL 393.70 1300.0 \n", "1 84918 84918 ESTJ BOTI CALENDARIO ADVENTO NAT/24 BA 436.73 1300.0 \n", "2 84918 84918 ESTJ BOTI CALENDARIO ADVENTO NAT/24 SE 379.94 1300.0 \n", "3 54230 54230 MALBEC DES COL 20 ANOS 100ml AL 138.54 499.9 \n", "4 54230 54230 MALBEC DES COL 20 ANOS 100ml BA 148.66 499.9 \n", "\n", " chave sku2 chave sku1 \n", "0 AL84918 AL84918 \n", "1 BA84918 BA84918 \n", "2 SE84918 SE84918 \n", "3 AL54230 AL54230 \n", "4 BA54230 BA54230 " ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_bi_preco['SKU2'] = df_bi_preco['SKU2'].astype('Int64')\n", "df_bi_preco.head()" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(34265, 68)" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\n", "\n", "df_final = pd.merge(left=df_final,right=df_bi_preco,right_on=['UF','SKU2'],left_on=['UF','Código'],how='left')\n", "df_final.shape " ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [], "source": [ "df_bi_preco['SKU1'] = df_bi_preco['SKU1'].fillna(0)" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(34265, 72)\n" ] } ], "source": [ "# Conversão segura para Int64 (nullable)\n", "df_bi_preco['SKU1'] = pd.to_numeric(df_bi_preco['SKU1'], errors='coerce').astype('Int64')\n", "\n", "# Realiza o merge\n", "df_final = pd.merge(\n", " left=df_final,\n", " right=df_bi_preco[['SKU1', 'SKU2', 'UF', 'PC', 'PV']],\n", " right_on=['UF', 'SKU1'],\n", " left_on=['UF', 'Código'],\n", " how='left'\n", ")\n", "\n", "# Verifica o resultado\n", "print(df_final.shape)\n" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [], "source": [ "df_final['PRECO DE COMPRA'] = np.where(~df_final['PC_x'].isna(),df_final['PC_x'],df_final['PC_y'])\n", "\n", "df_final['PRECO DE VENDA'] = np.where(~df_final['PV_x'].isna(),df_final['PV_x'],df_final['PV_y'])\n", "\n" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "CANAL\n", "TODOS 27145\n", "VD 7120\n", "Name: count, dtype: int64" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final['CANAL'] = np.where((df_final['CANAL'] == 'LJ') | (df_final['CANAL'] == 'HIB'), \"TODOS\" , np.where((df_final['CANAL'] == 'CD') | (df_final['CANAL'] == 'VD'), \"VD\", df_final['CANAL']))\n", "\n", "df_final['CANAL'].value_counts()" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [], "source": [ "df_final = df_final.drop_duplicates()" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [], "source": [ "df_final = df_final.drop(columns=['SKU1_x','SKU1_y','SKU2_x','SKU2_y','PC_x', 'PV_x','PC_y', 'PV_y','Subcategoria',\n", "'Quantidade por caixa'\n", "])" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [], "source": [ "df_final['UFPRODUTO'] = df_final['UF'].astype(str) + df_final['Código'].astype(str)\n" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [], "source": [ "df_final = df_final.rename(columns={'Compra inteligente Próximo Ciclo + 1':'Compra inteligente Próximo Ciclo','Arquivo_Origem': 'MARCA'})" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "np.int64(0)" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final = df_final[~df_final['Marca'].isna()]\n", "df_final['Marca'].isna().sum()" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['Ciclo_x', 'Região', 'Canal', 'Código', 'Descrição_x', 'IAF',\n", " 'Tipo de pedido', 'Foco', 'Unidade de negócio', 'Marca', 'Categoria',\n", " 'Tipo de promoção', 'Catálogo', 'Tipo de produto', 'Ação consumidor',\n", " 'Percentual de desconto consumidor', 'Ação revendedor',\n", " 'Percentual de desconto revendedor', 'MATCH', 'PDV', 'CANAL',\n", " 'DESCRIÇÃO PDV', 'UF', 'ANALISTA', 'SUPERVISOR', 'SKU', 'curva',\n", " 'categoria', 'proj_mar', 'proj_mar+1', 'ESTOQUE ATUAL',\n", " 'ESTOQUE EM TRANSITO', 'PEDIDO PENDENTE', 'DDV PREVISTO', 'preço',\n", " 'SKU_FINAL', 'C202412', 'C202413', 'C202414', 'C202415', 'C202416',\n", " 'C202417', 'C202501', 'C202502', 'C202503', 'C202504', 'C202505',\n", " 'C202506', 'C202507', 'C202508', 'C202509', 'C202510', 'C202511',\n", " 'C202512', 'Ciclo_y', 'INICIO CICLO', 'FIM CICLO', 'DURAÇÃO',\n", " 'dias_ate_inicio', 'Descrição_y', 'chave sku2', 'chave sku1',\n", " 'PRECO DE COMPRA', 'PRECO DE VENDA', 'UFPRODUTO'],\n", " dtype='object')" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [], "source": [ "df_vdc = pd.read_csv(r\"C:\\Users\\joao.herculano\\GRUPO GINSENG\\Assistência Suprimentos - 2025\\SUPRIMENTOS\\DB_PROMOÇÕES\\BOTICARIO\\C10\\VENDA VITORIA 2024\\VENDA VITORIA.csv\")\n", "\n", "df_vdc['PRODUTO'] = df_vdc['PRODUTO'].astype('Int64')\n", "\n", "df_final['Código'] = df_final['Código'].astype('Int64')\n", "\n", "df_final =pd.merge(left=df_final,right=df_vdc,left_on= ['PDV','Código'],right_on= ['PDV GINSENG','PRODUTO'],how='left' )\n", "\n", "df_final[df_final.columns[-1]] = df_final[df_final.columns[-1]].fillna(0)" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PDV GINSENGPRODUTO202401202402202403202404202405202406202407202408202409202410202411202412202413202414202415202416
1235237017404312241216814614120810442014
30332370274043222822101414101282261436100
51712370374043101861862200102224226216
\n", "
" ], "text/plain": [ " PDV GINSENG PRODUTO 202401 202402 202403 202404 202405 202406 \\\n", "1235 23701 74043 12 24 12 16 8 14 \n", "3033 23702 74043 2 22 8 22 10 14 \n", "5171 23703 74043 10 18 6 18 6 2 \n", "\n", " 202407 202408 202409 202410 202411 202412 202413 202414 202415 \\\n", "1235 6 14 12 0 8 10 4 42 0 \n", "3033 14 10 12 8 22 6 14 36 10 \n", "5171 20 0 10 2 22 4 2 26 2 \n", "\n", " 202416 \n", "1235 14 \n", "3033 0 \n", "5171 16 " ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_vdc[df_vdc['PRODUTO']== 74043].head()" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [], "source": [ "df_final = df_final.fillna(0)\n" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['Ciclo_x', 'Região', 'Canal', 'Código', 'Descrição_x', 'IAF',\n", " 'Tipo de pedido', 'Foco', 'Unidade de negócio', 'Marca', 'Categoria',\n", " 'Tipo de promoção', 'Catálogo', 'Tipo de produto', 'Ação consumidor',\n", " 'Percentual de desconto consumidor', 'Ação revendedor',\n", " 'Percentual de desconto revendedor', 'MATCH', 'PDV', 'CANAL',\n", " 'DESCRIÇÃO PDV', 'UF', 'ANALISTA', 'SUPERVISOR', 'SKU', 'curva',\n", " 'categoria', 'proj_mar', 'proj_mar+1', 'ESTOQUE ATUAL',\n", " 'ESTOQUE EM TRANSITO', 'PEDIDO PENDENTE', 'DDV PREVISTO', 'preço',\n", " 'SKU_FINAL', 'C202412', 'C202413', 'C202414', 'C202415', 'C202416',\n", " 'C202417', 'C202501', 'C202502', 'C202503', 'C202504', 'C202505',\n", " 'C202506', 'C202507', 'C202508', 'C202509', 'C202510', 'C202511',\n", " 'C202512', 'Ciclo_y', 'INICIO CICLO', 'FIM CICLO', 'DURAÇÃO',\n", " 'dias_ate_inicio', 'Descrição_y', 'chave sku2', 'chave sku1',\n", " 'PRECO DE COMPRA', 'PRECO DE VENDA', 'UFPRODUTO', 'PDV GINSENG',\n", " 'PRODUTO', '202401', '202402', '202403', '202404', '202405', '202406',\n", " '202407', '202408', '202409', '202410', '202411', '202412', '202413',\n", " '202414', '202415', '202416'],\n", " dtype='object')" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['202401', '202402', '202403', '202404', '202405', '202406', '202407',\n", " '202408', '202409', '202410', '202411', '202412', '202413', '202414',\n", " '202415', '202416'],\n", " dtype='object')" ] }, "execution_count": 63, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns[-16:]" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [], "source": [ "df_final.to_clipboard()" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [], "source": [ "import re\n", "\n", "# identificar colunas de ciclo puro (ex: '202407')\n", "colunas_ciclo_puro = [col for col in df_final.columns[-16:]]\n", "\n", "for col in colunas_ciclo_puro:\n", " col_hist = f'C{col}'\n", " if col_hist in df_final.columns:\n", " # mantém o maior valor entre a coluna histórica e a pura\n", " df_final[col_hist] = df_final[[col_hist, col]].max(axis=1)\n", "\n", "# remove as colunas puras\n", "if colunas_ciclo_puro:\n", " df_final.drop(columns=colunas_ciclo_puro, inplace=True)\n" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['Ciclo_x', 'Região', 'Canal', 'Código', 'Descrição_x', 'IAF',\n", " 'Tipo de pedido', 'Foco', 'Unidade de negócio', 'Marca', 'Categoria',\n", " 'Tipo de promoção', 'Catálogo', 'Tipo de produto', 'Ação consumidor',\n", " 'Percentual de desconto consumidor', 'Ação revendedor',\n", " 'Percentual de desconto revendedor', 'MATCH', 'PDV', 'CANAL',\n", " 'DESCRIÇÃO PDV', 'UF', 'ANALISTA', 'SUPERVISOR', 'SKU', 'curva',\n", " 'categoria', 'proj_mar', 'proj_mar+1', 'ESTOQUE ATUAL',\n", " 'ESTOQUE EM TRANSITO', 'PEDIDO PENDENTE', 'DDV PREVISTO', 'preço',\n", " 'SKU_FINAL', 'C202412', 'C202413', 'C202414', 'C202415', 'C202416',\n", " 'C202417', 'C202501', 'C202502', 'C202503', 'C202504', 'C202505',\n", " 'C202506', 'C202507', 'C202508', 'C202509', 'C202510', 'C202511',\n", " 'C202512', 'Ciclo_y', 'INICIO CICLO', 'FIM CICLO', 'DURAÇÃO',\n", " 'dias_ate_inicio', 'Descrição_y', 'chave sku2', 'chave sku1',\n", " 'PRECO DE COMPRA', 'PRECO DE VENDA', 'UFPRODUTO', 'PDV GINSENG',\n", " 'PRODUTO'],\n", " dtype='object')" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DATA_VENDAPDVpdvs cpDESC PDVCódigoDescriçãoQuantidadeFaturamentoCicloDate
02025-04-011299324253PERFUMARIA E COSMETICOS QUEIROZ DOURADO LTDA1004FLORATTA DES COL MY BLUE 75ml198,99C2025052025-04-01
12025-04-011299324253PERFUMARIA E COSMETICOS QUEIROZ DOURADO LTDA4539BOTIK CR FAC FIRMADOR AC/HIAL 40g V21129,05C2025052025-04-01
22025-04-011299324253PERFUMARIA E COSMETICOS QUEIROZ DOURADO LTDA29046BOTICOLL CONNEX DES BDY SPR 100ml V6 PCK138,9C2025052025-04-01
32025-04-011299324253PERFUMARIA E COSMETICOS QUEIROZ DOURADO LTDA47154CBEM DES ROLL S/ALUM 55ml121,98C2025052025-04-01
42025-04-011299324253PERFUMARIA E COSMETICOS QUEIROZ DOURADO LTDA47411ARBO NECESS LONA157,26C2025052025-04-01
\n", "
" ], "text/plain": [ " DATA_VENDA PDV pdvs cp DESC PDV \\\n", "0 2025-04-01 12993 24253 PERFUMARIA E COSMETICOS QUEIROZ DOURADO LTDA \n", "1 2025-04-01 12993 24253 PERFUMARIA E COSMETICOS QUEIROZ DOURADO LTDA \n", "2 2025-04-01 12993 24253 PERFUMARIA E COSMETICOS QUEIROZ DOURADO LTDA \n", "3 2025-04-01 12993 24253 PERFUMARIA E COSMETICOS QUEIROZ DOURADO LTDA \n", "4 2025-04-01 12993 24253 PERFUMARIA E COSMETICOS QUEIROZ DOURADO LTDA \n", "\n", " Código Descrição Quantidade Faturamento \\\n", "0 1004 FLORATTA DES COL MY BLUE 75ml 1 98,99 \n", "1 4539 BOTIK CR FAC FIRMADOR AC/HIAL 40g V2 1 129,05 \n", "2 29046 BOTICOLL CONNEX DES BDY SPR 100ml V6 PCK 1 38,9 \n", "3 47154 CBEM DES ROLL S/ALUM 55ml 1 21,98 \n", "4 47411 ARBO NECESS LONA 1 57,26 \n", "\n", " Ciclo Date \n", "0 C202505 2025-04-01 \n", "1 C202505 2025-04-01 \n", "2 C202505 2025-04-01 \n", "3 C202505 2025-04-01 \n", "4 C202505 2025-04-01 " ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_irece = pd.read_csv(r\"C:\\Users\\joao.herculano\\GRUPO GINSENG\\Assistência Suprimentos - 2025\\DADOS DOURADO\\VENDA\\COMPILADO_VENDAS.csv\", sep=';')\n", "\n", "df_irece['DATA_VENDA'] = pd.to_datetime(df_irece['DATA_VENDA'], dayfirst=True)\n", "\n", "df_irece = pd.merge(df_irece,calendario[['Ciclo','Date']],how='left', left_on='DATA_VENDA',right_on='Date')\n", "\n", "df_irece.head()" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [], "source": [ "df_irece_agrupado = df_irece.groupby(['PDV','Código','Ciclo'])['Quantidade'].sum().reset_index()\n", "\n", "df_pivotado = df_irece_agrupado.pivot(index=['PDV', 'Código'], columns='Ciclo', values='Quantidade').reset_index()\n", "\n", "df_pivotado = df_pivotado.fillna(0)" ] }, { "cell_type": "code", "execution_count": 69, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['C202413', 'C202414', 'C202415', 'C202416', 'C202417', 'C202501',\n", " 'C202502', 'C202503', 'C202504', 'C202505', 'C202506', 'C202507',\n", " 'C202508', 'C202509', 'C202510', 'C202511', 'C202512', 'Ciclo_y'],\n", " dtype='object')" ] }, "execution_count": 69, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns[37:55]" ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['Ciclo_x', 'Região', 'Canal', 'Código', 'Descrição_x', 'IAF',\n", " 'Tipo de pedido', 'Foco', 'Unidade de negócio', 'Marca', 'Categoria',\n", " 'Tipo de promoção', 'Catálogo', 'Tipo de produto', 'Ação consumidor',\n", " 'Percentual de desconto consumidor', 'Ação revendedor',\n", " 'Percentual de desconto revendedor', 'MATCH', 'PDV', 'CANAL',\n", " 'DESCRIÇÃO PDV', 'UF', 'ANALISTA', 'SUPERVISOR', 'SKU', 'curva',\n", " 'categoria', 'proj_mar', 'proj_mar+1', 'ESTOQUE ATUAL',\n", " 'ESTOQUE EM TRANSITO', 'PEDIDO PENDENTE', 'DDV PREVISTO', 'preço',\n", " 'SKU_FINAL', '202412', '202413', '202414', '202415', '202416', '202417',\n", " '202501', '202502', '202503', '202504', '202505', '202506', '202507',\n", " '202508', '202509', '202510', '202511', '202512', 'Ciclo_y',\n", " 'INICIO CICLO', 'FIM CICLO', 'DURAÇÃO', 'dias_ate_inicio',\n", " 'Descrição_y', 'chave sku2', 'chave sku1', 'PRECO DE COMPRA',\n", " 'PRECO DE VENDA', 'UFPRODUTO', 'PDV GINSENG', 'PRODUTO'],\n", " dtype='object')" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "for col_c in df_final.columns[37:55]:\n", " sufixo = col_c[1:] # Remove o 'C' do início, ex: 'C202407' -> '202407'\n", " df_final.columns = df_final.columns.str.replace(\"C20\", \"20\", regex=True)\n", "\n", "\n", "df_final.columns" ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Ciclo_xRegiãoCanalCódigoDescrição_xIAFTipo de pedidoFocoUnidade de negócioMarca...C202415C202416C202417C202501C202502C202503C202504C202505C202506C202507
0202515NNELoja50052ARBO LOC DES HID CPO 75mlNãoSemanalNãoBOTARBO...0.00.00.00.00.00.00.00.00.00.0
1202515NNELoja50052ARBO LOC DES HID CPO 75mlNãoSemanalNãoBOTARBO...0.00.00.00.00.00.00.00.00.00.0
2202515NNELoja50052ARBO LOC DES HID CPO 75mlNãoSemanalNãoBOTARBO...0.00.00.00.00.00.00.00.00.00.0
3202515NNELoja50052ARBO LOC DES HID CPO 75mlNãoSemanalNãoBOTARBO...0.00.00.00.00.00.00.00.00.00.0
4202515NNELoja50052ARBO LOC DES HID CPO 75mlNãoSemanalNãoBOTARBO...0.00.00.00.00.00.00.00.00.00.0
\n", "

5 rows × 91 columns

\n", "
" ], "text/plain": [ " Ciclo_x Região Canal Código Descrição_x IAF \\\n", "0 202515 NNE Loja 50052 ARBO LOC DES HID CPO 75ml Não \n", "1 202515 NNE Loja 50052 ARBO LOC DES HID CPO 75ml Não \n", "2 202515 NNE Loja 50052 ARBO LOC DES HID CPO 75ml Não \n", "3 202515 NNE Loja 50052 ARBO LOC DES HID CPO 75ml Não \n", "4 202515 NNE Loja 50052 ARBO LOC DES HID CPO 75ml Não \n", "\n", " Tipo de pedido Foco Unidade de negócio Marca ... C202415 C202416 C202417 \\\n", "0 Semanal Não BOT ARBO ... 0.0 0.0 0.0 \n", "1 Semanal Não BOT ARBO ... 0.0 0.0 0.0 \n", "2 Semanal Não BOT ARBO ... 0.0 0.0 0.0 \n", "3 Semanal Não BOT ARBO ... 0.0 0.0 0.0 \n", "4 Semanal Não BOT ARBO ... 0.0 0.0 0.0 \n", "\n", " C202501 C202502 C202503 C202504 C202505 C202506 C202507 \n", "0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", "1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", "2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", "3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", "4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", "\n", "[5 rows x 91 columns]" ] }, "execution_count": 71, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final = pd.merge(df_final,df_pivotado,how='left',on=['PDV','Código'])\n", "\n", "df_final = df_final.fillna(0)\n", "\n", "df_final.head()" ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['Ciclo_x', 'Região', 'Canal', 'Código', 'Descrição_x', 'IAF',\n", " 'Tipo de pedido', 'Foco', 'Unidade de negócio', 'Marca', 'Categoria',\n", " 'Tipo de promoção', 'Catálogo', 'Tipo de produto', 'Ação consumidor',\n", " 'Percentual de desconto consumidor', 'Ação revendedor',\n", " 'Percentual de desconto revendedor', 'MATCH', 'PDV', 'CANAL',\n", " 'DESCRIÇÃO PDV', 'UF', 'ANALISTA', 'SUPERVISOR', 'SKU', 'curva',\n", " 'categoria', 'proj_mar', 'proj_mar+1', 'ESTOQUE ATUAL',\n", " 'ESTOQUE EM TRANSITO', 'PEDIDO PENDENTE', 'DDV PREVISTO', 'preço',\n", " 'SKU_FINAL', '202412', '202413', '202414', '202415', '202416', '202417',\n", " '202501', '202502', '202503', '202504', '202505', '202506', '202507',\n", " '202508', '202509', '202510', '202511', '202512', 'Ciclo_y',\n", " 'INICIO CICLO', 'FIM CICLO', 'DURAÇÃO', 'dias_ate_inicio',\n", " 'Descrição_y', 'chave sku2', 'chave sku1', 'PRECO DE COMPRA',\n", " 'PRECO DE VENDA', 'UFPRODUTO', 'PDV GINSENG', 'PRODUTO', 'C202401',\n", " 'C202402', 'C202403', 'C202404', 'C202405', 'C202406', 'C202407',\n", " 'C202408', 'C202409', 'C202410', 'C202411', 'C202412', 'C202413',\n", " 'C202414', 'C202415', 'C202416', 'C202417', 'C202501', 'C202502',\n", " 'C202503', 'C202504', 'C202505', 'C202506', 'C202507'],\n", " dtype='object')" ] }, "execution_count": 72, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [], "source": [ "\n", "\n", "# 1. Identificar colunas no formato 'C2024xx', 'C2025xx', etc.\n", "colunas_ciclo_c = [col for col in df_pivotado.columns if re.fullmatch(r'C20\\d{4}', col)]\n", "\n", "for col_c in colunas_ciclo_c:\n", " sufixo = col_c[1:] # Remove o 'C' do início, ex: 'C202407' -> '202407'\n", " col_hist = col_c\n", " \n", " if col_hist in df_final.columns:\n", " # Pega o maior valor entre a coluna de histórico e a de ciclo com \"C\"\n", " df_final[col_hist] = df_final[[col_hist, col_c]].max(axis=1)\n", "\n", "# (Opcional) Remover as colunas 'C20xxxx' após o merge\n", "df_final.drop(columns=colunas_ciclo_c, inplace=True)\n" ] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['Ciclo_x', 'Região', 'Canal', 'Código', 'Descrição_x', 'IAF',\n", " 'Tipo de pedido', 'Foco', 'Unidade de negócio', 'Marca', 'Categoria',\n", " 'Tipo de promoção', 'Catálogo', 'Tipo de produto', 'Ação consumidor',\n", " 'Percentual de desconto consumidor', 'Ação revendedor',\n", " 'Percentual de desconto revendedor', 'MATCH', 'PDV', 'CANAL',\n", " 'DESCRIÇÃO PDV', 'UF', 'ANALISTA', 'SUPERVISOR', 'SKU', 'curva',\n", " 'categoria', 'proj_mar', 'proj_mar+1', 'ESTOQUE ATUAL',\n", " 'ESTOQUE EM TRANSITO', 'PEDIDO PENDENTE', 'DDV PREVISTO', 'preço',\n", " 'SKU_FINAL', '202412', '202413', '202414', '202415', '202416', '202417',\n", " '202501', '202502', '202503', '202504', '202505', '202506', '202507',\n", " '202508', '202509', '202510', '202511', '202512', 'Ciclo_y',\n", " 'INICIO CICLO', 'FIM CICLO', 'DURAÇÃO', 'dias_ate_inicio',\n", " 'Descrição_y', 'chave sku2', 'chave sku1', 'PRECO DE COMPRA',\n", " 'PRECO DE VENDA', 'UFPRODUTO', 'PDV GINSENG', 'PRODUTO'],\n", " dtype='object')" ] }, "execution_count": 74, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns" ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "202401 C202401\n", "202402 C202402\n", "202403 C202403\n", "202404 C202404\n", "202405 C202405\n", "202406 C202406\n", "202407 C202407\n", "202408 C202408\n", "202409 C202409\n", "202410 C202410\n", "202411 C202411\n", "202412 C202412\n", "202413 C202413\n", "202414 C202414\n", "202415 C202415\n", "202416 C202416\n", "202417 C202417\n", "202501 C202501\n", "202502 C202502\n", "202503 C202503\n", "202504 C202504\n", "202505 C202505\n", "202506 C202506\n", "202507 C202507\n" ] } ], "source": [ "colunas_ciclo_c = [col for col in df_pivotado.columns if re.fullmatch(r'C20\\d{4}', col)]\n", "\n", "for col_c in colunas_ciclo_c:\n", " sufixo = col_c[1:] # Remove o 'C' do início, ex: 'C202407' -> '202407'\n", " col_hist = col_c\n", " print(sufixo,col_c)\n" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [], "source": [ "df_final = df_final.drop(columns=['Ciclo_y'])" ] }, { "cell_type": "code", "execution_count": 77, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['Ciclo_x', 'Região', 'Canal', 'Código', 'Descrição_x', 'IAF',\n", " 'Tipo de pedido', 'Foco', 'Unidade de negócio', 'Marca', 'Categoria',\n", " 'Tipo de promoção', 'Catálogo', 'Tipo de produto', 'Ação consumidor',\n", " 'Percentual de desconto consumidor', 'Ação revendedor',\n", " 'Percentual de desconto revendedor', 'MATCH', 'PDV', 'CANAL',\n", " 'DESCRIÇÃO PDV', 'UF', 'ANALISTA', 'SUPERVISOR', 'SKU', 'curva',\n", " 'categoria', 'proj_mar', 'proj_mar+1', 'ESTOQUE ATUAL',\n", " 'ESTOQUE EM TRANSITO', 'PEDIDO PENDENTE', 'DDV PREVISTO', 'preço',\n", " 'SKU_FINAL', '202412', '202413', '202414', '202415', '202416', '202417',\n", " '202501', '202502', '202503', '202504', '202505', '202506', '202507',\n", " '202508', '202509', '202510', '202511', '202512', 'INICIO CICLO',\n", " 'FIM CICLO', 'DURAÇÃO', 'dias_ate_inicio', 'Descrição_y', 'chave sku2',\n", " 'chave sku1', 'PRECO DE COMPRA', 'PRECO DE VENDA', 'UFPRODUTO',\n", " 'PDV GINSENG', 'PRODUTO'],\n", " dtype='object')" ] }, "execution_count": 77, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns" ] }, { "cell_type": "code", "execution_count": 78, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(34265, 66)" ] }, "execution_count": 78, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final = df_final.drop_duplicates()\n", "df_final.shape" ] }, { "cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [], "source": [ "df_final['chave'] = df_final['PDV'].astype('str') + df_final['Código'].astype('str')" ] }, { "cell_type": "code", "execution_count": 80, "metadata": {}, "outputs": [], "source": [ "df_final = df_final.fillna(0)\n" ] }, { "cell_type": "code", "execution_count": 81, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['202412', '202413', '202414', '202415', '202416', '202417', '202501',\n", " '202502', '202503', '202504', '202505', '202506', '202507', '202508',\n", " '202509', '202510', '202511', '202512'],\n", " dtype='object')" ] }, "execution_count": 81, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns[36:54]" ] }, { "cell_type": "code", "execution_count": 82, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['Ciclo_x', 'Região', 'Canal', 'Código', 'Descrição_x', 'IAF',\n", " 'Tipo de pedido', 'Foco', 'Unidade de negócio', 'Marca', 'Categoria',\n", " 'Tipo de promoção', 'Catálogo', 'Tipo de produto', 'Ação consumidor',\n", " 'Percentual de desconto consumidor', 'Ação revendedor',\n", " 'Percentual de desconto revendedor', 'MATCH', 'PDV', 'CANAL',\n", " 'DESCRIÇÃO PDV', 'UF', 'ANALISTA', 'SUPERVISOR', 'SKU', 'curva',\n", " 'categoria', 'proj_mar', 'proj_mar+1', 'ESTOQUE ATUAL',\n", " 'ESTOQUE EM TRANSITO', 'PEDIDO PENDENTE', 'DDV PREVISTO', 'preço',\n", " 'SKU_FINAL', '202412', '202413', '202414', '202415', '202416', '202417',\n", " '202501', '202502', '202503', '202504', '202505', '202506', '202507',\n", " '202508', '202509', '202510', '202511', '202512', 'INICIO CICLO',\n", " 'FIM CICLO', 'DURAÇÃO', 'dias_ate_inicio', 'Descrição_y', 'chave sku2',\n", " 'chave sku1', 'PRECO DE COMPRA', 'PRECO DE VENDA', 'UFPRODUTO',\n", " 'PDV GINSENG', 'PRODUTO', 'chave'],\n", " dtype='object')" ] }, "execution_count": 82, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns" ] }, { "cell_type": "code", "execution_count": 83, "metadata": {}, "outputs": [], "source": [ "# Define list of target columns\n", "sales_2024_cols = df_final.columns[36:54]\n", "# Create a new column with the row-wise max\n", "df_final['PICO DE VENDAS 2024'] = df_final[sales_2024_cols].max(axis=1)\n", "\n" ] }, { "cell_type": "code", "execution_count": 84, "metadata": {}, "outputs": [], "source": [ "vendas_6_meses = df_final.columns[48:54]\n", "\n", "df_final['Pico Vendas Ultimos 6 ciclos'] = df_final[vendas_6_meses].max(axis=1)" ] }, { "cell_type": "code", "execution_count": 85, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['202413', '202414', '202415', '202416', '202417', '202501', '202502'], dtype='object')" ] }, "execution_count": 85, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns[37:44]" ] }, { "cell_type": "code", "execution_count": 86, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['Ciclo_x', 'Região', 'Canal', 'Código', 'Descrição_x', 'IAF',\n", " 'Tipo de pedido', 'Foco', 'Unidade de negócio', 'Marca', 'Categoria',\n", " 'Tipo de promoção', 'Catálogo', 'Tipo de produto', 'Ação consumidor',\n", " 'Percentual de desconto consumidor', 'Ação revendedor',\n", " 'Percentual de desconto revendedor', 'MATCH', 'PDV', 'CANAL',\n", " 'DESCRIÇÃO PDV', 'UF', 'ANALISTA', 'SUPERVISOR', 'SKU', 'curva',\n", " 'categoria', 'proj_mar', 'proj_mar+1', 'ESTOQUE ATUAL',\n", " 'ESTOQUE EM TRANSITO', 'PEDIDO PENDENTE', 'DDV PREVISTO', 'preço',\n", " 'SKU_FINAL', '202412', '202413', '202414', '202415', '202416', '202417',\n", " '202501', '202502', '202503', '202504', '202505', '202506', '202507',\n", " '202508', '202509', '202510', '202511', '202512', 'INICIO CICLO',\n", " 'FIM CICLO', 'DURAÇÃO', 'dias_ate_inicio', 'Descrição_y', 'chave sku2',\n", " 'chave sku1', 'PRECO DE COMPRA', 'PRECO DE VENDA', 'UFPRODUTO',\n", " 'PDV GINSENG', 'PRODUTO', 'chave', 'PICO DE VENDAS 2024',\n", " 'Pico Vendas Ultimos 6 ciclos'],\n", " dtype='object')" ] }, "execution_count": 86, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns" ] }, { "cell_type": "code", "execution_count": 87, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['Ciclo_x', 'Região', 'Canal', 'Código', 'Descrição_x', 'IAF',\n", " 'Tipo de pedido', 'Foco', 'Unidade de negócio', 'Marca', 'Categoria',\n", " 'Tipo de promoção', 'Catálogo', 'Tipo de produto', 'Ação consumidor',\n", " 'Percentual de desconto consumidor', 'Ação revendedor',\n", " 'Percentual de desconto revendedor', 'MATCH', 'PDV', 'CANAL',\n", " 'DESCRIÇÃO PDV', 'UF', 'ANALISTA', 'SUPERVISOR', 'SKU', 'curva',\n", " 'categoria', 'proj_mar', 'proj_mar+1', 'ESTOQUE ATUAL',\n", " 'ESTOQUE EM TRANSITO', 'PEDIDO PENDENTE', 'DDV PREVISTO', 'preço',\n", " 'SKU_FINAL', '202412', '202413', '202414', '202415', '202416', '202417',\n", " '202501', '202502', '202503', '202504', '202505', '202506', '202507',\n", " '202508', '202509', '202510', '202511', '202512', 'INICIO CICLO',\n", " 'FIM CICLO', 'DURAÇÃO', 'dias_ate_inicio', 'Descrição_y', 'chave sku2',\n", " 'chave sku1', 'PRECO DE COMPRA', 'PRECO DE VENDA', 'UFPRODUTO',\n", " 'PDV GINSENG', 'PRODUTO', 'chave', 'PICO DE VENDAS 2024',\n", " 'Pico Vendas Ultimos 6 ciclos'],\n", " dtype='object')" ] }, "execution_count": 87, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns" ] }, { "cell_type": "code", "execution_count": 88, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['202412', '202413', '202414', '202415', '202416', '202417', '202501',\n", " '202502', '202503', '202504', '202505', '202506', '202507', '202508',\n", " '202509', '202510', '202511', '202512'],\n", " dtype='object')" ] }, "execution_count": 88, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns[36:54]" ] }, { "cell_type": "code", "execution_count": 89, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Ciclo_xRegiãoCanalCódigoDescrição_xIAFTipo de pedidoFocoUnidade de negócioMarca...chave sku2chave sku1PRECO DE COMPRAPRECO DE VENDAUFPRODUTOPDV GINSENGPRODUTOchavePICO DE VENDAS 2024Pico Vendas Ultimos 6 ciclos
0202515NNELoja50052ARBO LOC DES HID CPO 75mlNãoSemanalNãoBOTARBO...AL50052AL5005211.7237.9AL500520.0012522500522.00.0
1202515NNELoja50052ARBO LOC DES HID CPO 75mlNãoSemanalNãoBOTARBO...AL50052AL5005211.7237.9AL500520.0012817500525.00.0
2202515NNELoja50052ARBO LOC DES HID CPO 75mlNãoSemanalNãoBOTARBO...AL50052AL5005211.7237.9AL500520.0012818500521.01.0
3202515NNELoja50052ARBO LOC DES HID CPO 75mlNãoSemanalNãoBOTARBO...AL50052AL5005211.7237.9AL500520.0012820500521.00.0
4202515NNELoja50052ARBO LOC DES HID CPO 75mlNãoSemanalNãoBOTARBO...AL50052AL5005211.7237.9AL500520.0012823500521.00.0
\n", "

5 rows × 69 columns

\n", "
" ], "text/plain": [ " Ciclo_x Região Canal Código Descrição_x IAF \\\n", "0 202515 NNE Loja 50052 ARBO LOC DES HID CPO 75ml Não \n", "1 202515 NNE Loja 50052 ARBO LOC DES HID CPO 75ml Não \n", "2 202515 NNE Loja 50052 ARBO LOC DES HID CPO 75ml Não \n", "3 202515 NNE Loja 50052 ARBO LOC DES HID CPO 75ml Não \n", "4 202515 NNE Loja 50052 ARBO LOC DES HID CPO 75ml Não \n", "\n", " Tipo de pedido Foco Unidade de negócio Marca ... chave sku2 chave sku1 \\\n", "0 Semanal Não BOT ARBO ... AL50052 AL50052 \n", "1 Semanal Não BOT ARBO ... AL50052 AL50052 \n", "2 Semanal Não BOT ARBO ... AL50052 AL50052 \n", "3 Semanal Não BOT ARBO ... AL50052 AL50052 \n", "4 Semanal Não BOT ARBO ... AL50052 AL50052 \n", "\n", " PRECO DE COMPRA PRECO DE VENDA UFPRODUTO PDV GINSENG PRODUTO chave \\\n", "0 11.72 37.9 AL50052 0.0 0 1252250052 \n", "1 11.72 37.9 AL50052 0.0 0 1281750052 \n", "2 11.72 37.9 AL50052 0.0 0 1281850052 \n", "3 11.72 37.9 AL50052 0.0 0 1282050052 \n", "4 11.72 37.9 AL50052 0.0 0 1282350052 \n", "\n", " PICO DE VENDAS 2024 Pico Vendas Ultimos 6 ciclos \n", "0 2.0 0.0 \n", "1 5.0 0.0 \n", "2 1.0 1.0 \n", "3 1.0 0.0 \n", "4 1.0 0.0 \n", "\n", "[5 rows x 69 columns]" ] }, "execution_count": 89, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.head()" ] }, { "cell_type": "code", "execution_count": 90, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\joao.herculano\\AppData\\Local\\Temp\\ipykernel_2580\\3082173574.py:27: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " .apply(calcular_crescimento) # retorna índice com PDV\n" ] } ], "source": [ "# Define as colunas mensais\n", "colunas_mensais = df_final.columns[36:54]\n", "\n", "# Função de cálculo por grupo\n", "def calcular_crescimento(grupo):\n", " soma_mensal = grupo[colunas_mensais].sum()\n", " variacao_mensal = soma_mensal.pct_change().dropna()\n", " variacao_mensal = variacao_mensal[np.isfinite(variacao_mensal)]\n", "\n", " if len(variacao_mensal) == 0:\n", " return pd.Series({'CRESCIMENTO': np.nan})\n", "\n", " media = variacao_mensal.mean()\n", " desvio = variacao_mensal.std()\n", "\n", " limite_sup = media + 2 * desvio\n", " limite_inf = media - 2 * desvio\n", "\n", " variacoes_filtradas = variacao_mensal[variacao_mensal.between(limite_inf, limite_sup)]\n", " crescimento = round(variacoes_filtradas.mean(), 4)\n", " return pd.Series({'CRESCIMENTO': crescimento})\n", "\n", "# Aplica a função por PDV\n", "crescimento_por_pdv = (\n", " df_final\n", " .groupby('PDV')\n", " .apply(calcular_crescimento) # retorna índice com PDV\n", " .reset_index(level=0) # reseta só o nível PDV\n", ")\n", "\n", "# Merge do resultado de volta no dataframe original\n", "df_final = df_final.merge(crescimento_por_pdv, on='PDV', how='left')\n" ] }, { "cell_type": "code", "execution_count": 91, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "np.float64(0.0857)" ] }, "execution_count": 91, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Suponha que os meses estão nas colunas 10 a 26 (17 colunas = 17 meses)\n", "colunas_mensais = df_final.columns[36:54]\n", "\n", "# Passo 1: Soma todas as linhas (itens) por mês → resultado: total por mês\n", "soma_mensal = df_final[colunas_mensais].sum()\n", "\n", "# Passo 2: Calcula a variação percentual de um mês para o outro\n", "variacao_mensal = soma_mensal.pct_change()\n", "variacao_mensal = variacao_mensal.dropna()\n", "\n", "variacao_mensal = variacao_mensal[np.isfinite(variacao_mensal)]\n", "\n", "# Passo 3: Calcula a média da variação (ignorando o primeiro NaN)\n", "media_variacao = variacao_mensal[1:].mean()\n", "\n", "# Calcula média e desvio padrão\n", "media = variacao_mensal.mean()\n", "desvio = variacao_mensal.std()\n", "\n", "# Define limite (ex: 2 desvios padrão)\n", "limite_superior = media + 2 * desvio\n", "limite_inferior = media - 2 * desvio\n", "\n", "# Filtra dados dentro do limite\n", "filtro = variacao_mensal.between(limite_inferior, limite_superior)\n", "df_filtrado = variacao_mensal[filtro]\n", "CRESCIMENTO = round(df_filtrado.mean(),4)\n", "\n", "df_final['CRESCIMENTO_GERAL'] = 0.2\n", "\n", "CRESCIMENTO\n" ] }, { "cell_type": "code", "execution_count": 92, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['202412', '202413', '202414', '202415', '202416', '202417', '202501',\n", " '202502', '202503', '202504', '202505', '202506', '202507', '202508',\n", " '202509', '202510', '202511', '202512'],\n", " dtype='object')" ] }, "execution_count": 92, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns[36:54]" ] }, { "cell_type": "code", "execution_count": 93, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CANALUFCódigomed_por_canal
0TODOSAL14280.0
1TODOSAL16340.0
2TODOSAL16400.0
3TODOSAL16500.0
4TODOSAL18060.0
...............
4445VDVDC884710.0
4446VDVDC885630.0
4447VDVDC887300.0
4448VDVDC894210.0
4449VDVDC894950.0
\n", "

4450 rows × 4 columns

\n", "
" ], "text/plain": [ " CANAL UF Código med_por_canal\n", "0 TODOS AL 1428 0.0\n", "1 TODOS AL 1634 0.0\n", "2 TODOS AL 1640 0.0\n", "3 TODOS AL 1650 0.0\n", "4 TODOS AL 1806 0.0\n", "... ... ... ... ...\n", "4445 VD VDC 88471 0.0\n", "4446 VD VDC 88563 0.0\n", "4447 VD VDC 88730 0.0\n", "4448 VD VDC 89421 0.0\n", "4449 VD VDC 89495 0.0\n", "\n", "[4450 rows x 4 columns]" ] }, "execution_count": 93, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vendas_todos_historicos = df_final.columns[36:54]\n", "\n", "df_final['MEDIANA DO HISTÓRICO'] = df_final[vendas_todos_historicos].median(axis=1)\n", "\n", "df_final['MEDIA DO HISTÓRICO'] = df_final[vendas_todos_historicos].mean(axis=1)\n", "\n", "medi = df_final.groupby(['CANAL','UF','Código'])['MEDIANA DO HISTÓRICO'].max().reset_index()\n", "medi = medi.rename(columns={'MEDIANA DO HISTÓRICO':'med_por_canal'})\n", "\n", "df_final = pd.merge(left=df_final, right=medi,on=['CANAL','UF','Código'],how='left')\n", "\n", "medi" ] }, { "cell_type": "code", "execution_count": 94, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'202415'" ] }, "execution_count": 94, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns[39]" ] }, { "cell_type": "code", "execution_count": 95, "metadata": {}, "outputs": [], "source": [ "mesmo_ciclo_ano_passado = df_final.columns[39]\n", "ciclo_ano_passado = df_final.columns[39]\n", "df_final[ciclo_ano_passado] = df_final[mesmo_ciclo_ano_passado]" ] }, { "cell_type": "code", "execution_count": 96, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\"df_final['CRESCIMENTO_GERAL'] = 0.2\\ndf_final['CRESCIMENTO'] = 0.2\"" ] }, "execution_count": 96, "metadata": {}, "output_type": "execute_result" } ], "source": [ "'''df_final['CRESCIMENTO_GERAL'] = 0.2\n", "df_final['CRESCIMENTO'] = 0.2'''" ] }, { "cell_type": "code", "execution_count": 97, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(34265, 77)" ] }, "execution_count": 97, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final['CRESCIMENTO_FINAL'] = df_final['CRESCIMENTO_GERAL'] + df_final['CRESCIMENTO'] #crescimento do pdv\n", "\n", "df_final['CRESCIMENTO_FINAL'] = np.where(df_final['CRESCIMENTO_GERAL'] + df_final['CRESCIMENTO']>0.8,0.8,df_final['CRESCIMENTO_GERAL'] + df_final['CRESCIMENTO'])\n", "\n", "df_final['CRESCIMENTO_FINAL'] = np.where(df_final['CRESCIMENTO_GERAL'] + df_final['CRESCIMENTO']<0,0,df_final['CRESCIMENTO_GERAL'] + df_final['CRESCIMENTO'])\n", "\n", "df_final['MEDIANA DO HISTÓRICO2'] = np.where(df_final['MEDIANA DO HISTÓRICO']==0,df_final['MEDIA DO HISTÓRICO'] ,df_final['MEDIANA DO HISTÓRICO'])\n", "\n", "# Primeiro cálculo intermediário\n", "df_final['PV GINSENG'] = np.where(df_final['CRESCIMENTO_FINAL'] * df_final[ciclo_ano_passado] + df_final[ciclo_ano_passado] <1,\n", " round(df_final['CRESCIMENTO_FINAL'] * df_final['MEDIANA DO HISTÓRICO2']+ df_final['MEDIANA DO HISTÓRICO2'],0), \n", " round(df_final['CRESCIMENTO_FINAL']*df_final[ciclo_ano_passado]+df_final[ciclo_ano_passado],0))\n", "\n", "\n", "df_final.shape" ] }, { "cell_type": "code", "execution_count": 98, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "PDV\n", "12522 445\n", "12817 445\n", "12818 445\n", "12820 445\n", "12823 445\n", " ... \n", "24257 445\n", "24268 445\n", "24269 445\n", "24293 445\n", "23813 445\n", "Name: count, Length: 77, dtype: Int64" ] }, "execution_count": 98, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final['PDV'].value_counts()" ] }, { "cell_type": "code", "execution_count": 99, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Ciclo_xRegiãoCanalCódigoDescrição_xIAFTipo de pedidoFocoUnidade de negócioMarca...PICO DE VENDAS 2024Pico Vendas Ultimos 6 ciclosCRESCIMENTOCRESCIMENTO_GERALMEDIANA DO HISTÓRICOMEDIA DO HISTÓRICOmed_por_canalCRESCIMENTO_FINALMEDIANA DO HISTÓRICO2PV GINSENG
0202515NNELoja50052ARBO LOC DES HID CPO 75mlNãoSemanalNãoBOTARBO...2.00.00.07620.20.00.1111110.00.27620.1111110.0
1202515NNELoja50052ARBO LOC DES HID CPO 75mlNãoSemanalNãoBOTARBO...5.00.00.08670.20.00.5555560.00.28670.5555561.0
2202515NNELoja50052ARBO LOC DES HID CPO 75mlNãoSemanalNãoBOTARBO...1.01.00.10650.20.00.0555560.00.30650.0555560.0
3202515NNELoja50052ARBO LOC DES HID CPO 75mlNãoSemanalNãoBOTARBO...1.00.00.08820.20.00.0555560.00.28820.0555560.0
4202515NNELoja50052ARBO LOC DES HID CPO 75mlNãoSemanalNãoBOTARBO...1.00.00.07450.20.00.1111110.00.27450.1111110.0
\n", "

5 rows × 77 columns

\n", "
" ], "text/plain": [ " Ciclo_x Região Canal Código Descrição_x IAF \\\n", "0 202515 NNE Loja 50052 ARBO LOC DES HID CPO 75ml Não \n", "1 202515 NNE Loja 50052 ARBO LOC DES HID CPO 75ml Não \n", "2 202515 NNE Loja 50052 ARBO LOC DES HID CPO 75ml Não \n", "3 202515 NNE Loja 50052 ARBO LOC DES HID CPO 75ml Não \n", "4 202515 NNE Loja 50052 ARBO LOC DES HID CPO 75ml Não \n", "\n", " Tipo de pedido Foco Unidade de negócio Marca ... PICO DE VENDAS 2024 \\\n", "0 Semanal Não BOT ARBO ... 2.0 \n", "1 Semanal Não BOT ARBO ... 5.0 \n", "2 Semanal Não BOT ARBO ... 1.0 \n", "3 Semanal Não BOT ARBO ... 1.0 \n", "4 Semanal Não BOT ARBO ... 1.0 \n", "\n", " Pico Vendas Ultimos 6 ciclos CRESCIMENTO CRESCIMENTO_GERAL \\\n", "0 0.0 0.0762 0.2 \n", "1 0.0 0.0867 0.2 \n", "2 1.0 0.1065 0.2 \n", "3 0.0 0.0882 0.2 \n", "4 0.0 0.0745 0.2 \n", "\n", " MEDIANA DO HISTÓRICO MEDIA DO HISTÓRICO med_por_canal CRESCIMENTO_FINAL \\\n", "0 0.0 0.111111 0.0 0.2762 \n", "1 0.0 0.555556 0.0 0.2867 \n", "2 0.0 0.055556 0.0 0.3065 \n", "3 0.0 0.055556 0.0 0.2882 \n", "4 0.0 0.111111 0.0 0.2745 \n", "\n", " MEDIANA DO HISTÓRICO2 PV GINSENG \n", "0 0.111111 0.0 \n", "1 0.555556 1.0 \n", "2 0.055556 0.0 \n", "3 0.055556 0.0 \n", "4 0.111111 0.0 \n", "\n", "[5 rows x 77 columns]" ] }, "execution_count": 99, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.head()" ] }, { "cell_type": "code", "execution_count": 100, "metadata": {}, "outputs": [], "source": [ "df_final = df_final.drop(columns=['MEDIANA DO HISTÓRICO2'] )" ] }, { "cell_type": "code", "execution_count": 101, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['202414', '202415', '202416', '202417', '202501', '202502', '202503'], dtype='object')" ] }, "execution_count": 101, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns[38:45]" ] }, { "cell_type": "code", "execution_count": 102, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['202508', '202509', '202510', '202511', '202512'], dtype='object')" ] }, "execution_count": 102, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns[49:54]" ] }, { "cell_type": "code", "execution_count": 103, "metadata": {}, "outputs": [], "source": [ "df_final = df_final.rename(columns={df_final.columns[49]: \"C-4\", df_final.columns[50]: \"C-3\",df_final.columns[51]: \"C-2\",df_final.columns[52]: \"C-1\",df_final.columns[53]: \"Atual\"})" ] }, { "cell_type": "code", "execution_count": 104, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['202416', '202417', '202501', '202502', '202503', '202504', '202505',\n", " '202506', '202507'],\n", " dtype='object')" ] }, "execution_count": 104, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns[40:49]" ] }, { "cell_type": "code", "execution_count": 105, "metadata": {}, "outputs": [], "source": [ "df_final.drop(columns=df_final.columns[40:49], inplace=True)\n", "df_final.drop(columns=df_final.columns[37:39], inplace=True)" ] }, { "cell_type": "code", "execution_count": 106, "metadata": {}, "outputs": [], "source": [ "df_final['COBERTURA ATUAL'] = df_final['ESTOQUE ATUAL'].astype(float) / df_final['DDV PREVISTO'].astype(float)" ] }, { "cell_type": "code", "execution_count": 107, "metadata": {}, "outputs": [], "source": [ "df_final['COBERTURA ATUAL'] = df_final['COBERTURA ATUAL'].replace([np.inf, -np.inf], 0)\n", "\n", "df_final['COBERTURA ATUAL'] = round(df_final['COBERTURA ATUAL'],0)" ] }, { "cell_type": "code", "execution_count": 108, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "COBERTURA ATUAL\n", "0.0 6787\n", "100.0 699\n", "50.0 447\n", "40.0 375\n", "20.0 342\n", " ... \n", "245.0 1\n", "778.0 1\n", "811.0 1\n", "1967.0 1\n", "644.0 1\n", "Name: count, Length: 641, dtype: int64" ] }, "execution_count": 108, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final['COBERTURA ATUAL'].value_counts()" ] }, { "cell_type": "code", "execution_count": 109, "metadata": {}, "outputs": [], "source": [ "df_final[\"DDV PREVISTO\"] = df_final[\"DDV PREVISTO\"].astype(float)\n", "\n", "df_final[\"DDV PREVISTO\"] = df_final[\"DDV PREVISTO\"].fillna(0)" ] }, { "cell_type": "code", "execution_count": 110, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "PDV\n", "12522 445\n", "12817 445\n", "12818 445\n", "12820 445\n", "12823 445\n", " ... \n", "24257 445\n", "24268 445\n", "24269 445\n", "24293 445\n", "23813 445\n", "Name: count, Length: 77, dtype: Int64" ] }, "execution_count": 110, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final['PDV'].value_counts()" ] }, { "cell_type": "code", "execution_count": 111, "metadata": {}, "outputs": [], "source": [ "r'''colunas_chave = [c for c in df_final.columns if c not in [\"DDV PREVISTO\", \"COBERTURA ATUAL\"]]\n", "\n", "\n", "# encontrar índice da linha com maior DDV e depois maior COBERTURA\n", "idx = (\n", "df_final\n", ".sort_values([\"DDV PREVISTO\", \"COBERTURA ATUAL\"], ascending=[False, False])\n", ".groupby(colunas_chave, as_index=False)\n", ".head(1)\n", ")\n", "\n", "\n", "# reordenar colunas como no original\n", "df_final_dedup = idx[df_final.columns.tolist()].reset_index(drop=True)'''\n", "\n", "df_final_dedup = df_final" ] }, { "cell_type": "code", "execution_count": 112, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['Ciclo_x', 'Região', 'Canal', 'Código', 'Descrição_x', 'IAF',\n", " 'Tipo de pedido', 'Foco', 'Unidade de negócio', 'Marca', 'Categoria',\n", " 'Tipo de promoção', 'Catálogo', 'Tipo de produto', 'Ação consumidor',\n", " 'Percentual de desconto consumidor', 'Ação revendedor',\n", " 'Percentual de desconto revendedor', 'MATCH', 'PDV', 'CANAL',\n", " 'DESCRIÇÃO PDV', 'UF', 'ANALISTA', 'SUPERVISOR', 'SKU', 'curva',\n", " 'categoria', 'proj_mar', 'proj_mar+1', 'ESTOQUE ATUAL',\n", " 'ESTOQUE EM TRANSITO', 'PEDIDO PENDENTE', 'DDV PREVISTO', 'preço',\n", " 'SKU_FINAL', '202412', '202415', 'C-4', 'C-3', 'C-2', 'C-1', 'Atual',\n", " 'INICIO CICLO', 'FIM CICLO', 'DURAÇÃO', 'dias_ate_inicio',\n", " 'Descrição_y', 'chave sku2', 'chave sku1', 'PRECO DE COMPRA',\n", " 'PRECO DE VENDA', 'UFPRODUTO', 'PDV GINSENG', 'PRODUTO', 'chave',\n", " 'PICO DE VENDAS 2024', 'Pico Vendas Ultimos 6 ciclos', 'CRESCIMENTO',\n", " 'CRESCIMENTO_GERAL', 'MEDIANA DO HISTÓRICO', 'MEDIA DO HISTÓRICO',\n", " 'med_por_canal', 'CRESCIMENTO_FINAL', 'PV GINSENG', 'COBERTURA ATUAL'],\n", " dtype='object')" ] }, "execution_count": 112, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final.columns" ] }, { "cell_type": "code", "execution_count": 113, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "('Ação consumidor',\n", " 'Percentual de desconto consumidor',\n", " 'Ação revendedor',\n", " 'Percentual de desconto revendedor',\n", " '202408')" ] }, "execution_count": 113, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Columns to bring up front\n", "priority_cols = [\n", " 'SKU',\t'Marca',\t'INICIO CICLO',\n", " 'FIM CICLO',\t'DURAÇÃO',\t'PRECO DE COMPRA',\t'PRECO DE VENDA',\n", " 'UFPRODUTO',\t'Item Desativado',\t'Data Prevista Regularização',\n", " 'ANALISTA',\t'UF',\t'CANAL',\t'PDV',\t'DESCRIÇÃO PDV',\t'Classe',\n", " 'Descrição',\t'Categoria',\n", "\t'ESTOQUE ATUAL', 'ESTOQUE EM TRANSITO',\t'COBERTURA ATUAL',\n", " 'Pedido Pendente',\t'PICO DE VENDAS 2024','Pico Vendas Ultimos 6 ciclos',\n", " 'C-4',\t'C-3',\t'C-2',\t'C-1',\t'Histórico de Vendas do Ciclo Atual',\n", " 'Dias sem venda'\n", "]\n", "\n", "# All remaining columns\n", "other_cols = [col for col in df_final_dedup.columns if col not in priority_cols]\n", "\n", "# Reorder\n", "'Ação consumidor', 'Percentual de desconto consumidor', 'Ação revendedor', 'Percentual de desconto revendedor', '202408'\n" ] }, { "cell_type": "code", "execution_count": 114, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Ciclo_xRegiãoCanalCódigoDescrição_xIAFTipo de pedidoFocoUnidade de negócioMarca...PICO DE VENDAS 2024Pico Vendas Ultimos 6 ciclosCRESCIMENTOCRESCIMENTO_GERALMEDIANA DO HISTÓRICOMEDIA DO HISTÓRICOmed_por_canalCRESCIMENTO_FINALPV GINSENGCOBERTURA ATUAL
39202515NNELoja50052ARBO LOC DES HID CPO 75mlNãoSemanalNãoBOTARBO...0.00.0NaN0.20.00.00.0NaNNaNNaN
116202515NNETodos57640ARBO NECESSAIRE PESNãoSemanalNãoBOTARBO...0.00.0NaN0.20.00.00.0NaNNaNNaN
193202515NNETodos51803BOTI BABY COND V2 400mlNãoSemanalNãoBOTBOTI BABY...0.00.0NaN0.20.00.03.0NaNNaNNaN
270202515NNETodos52023BOTI BABY LOC HID CPO 400mlNãoSemanalNãoBOTBOTI BABY...0.00.0NaN0.20.00.03.0NaNNaNNaN
347202515NNETodos52025BOTI BABY SAB LIQ GLIC V2 400mlNãoSemanalNãoBOTBOTI BABY...0.00.0NaN0.20.00.08.0NaNNaNNaN
..................................................................
33919202515NNEVD36826REF MAKE B PO COMP FAC HYAL 70 8gNãoSemanalNãoBOTMAKE B....0.00.0NaN0.20.00.00.0NaNNaNNaN
33996202515NNEVD46568SOPHIE BOLSA NYLONNãoSemanalNãoBOTSOPHIE...0.00.0NaN0.20.00.01.0NaNNaNNaN
34073202515NNEVD47949THE BLEND EDP 100ml V2NãoSemanalNãoBOTTHE BLEND...0.00.0NaN0.20.00.017.0NaNNaNNaN
34150202515NNEVD49038ZAAD BALM POS BARB 110g V4NãoSemanalNãoBOTZAAD...0.00.0NaN0.20.00.00.0NaNNaNNaN
34227202515NNEVD48368ZAAD ESPUM P/ BARB 200ml V4NãoSemanalNãoBOTZAAD...0.00.0NaN0.20.00.01.0NaNNaNNaN
\n", "

445 rows × 66 columns

\n", "
" ], "text/plain": [ " Ciclo_x Região Canal Código Descrição_x IAF \\\n", "39 202515 NNE Loja 50052 ARBO LOC DES HID CPO 75ml Não \n", "116 202515 NNE Todos 57640 ARBO NECESSAIRE PES Não \n", "193 202515 NNE Todos 51803 BOTI BABY COND V2 400ml Não \n", "270 202515 NNE Todos 52023 BOTI BABY LOC HID CPO 400ml Não \n", "347 202515 NNE Todos 52025 BOTI BABY SAB LIQ GLIC V2 400ml Não \n", "... ... ... ... ... ... ... \n", "33919 202515 NNE VD 36826 REF MAKE B PO COMP FAC HYAL 70 8g Não \n", "33996 202515 NNE VD 46568 SOPHIE BOLSA NYLON Não \n", "34073 202515 NNE VD 47949 THE BLEND EDP 100ml V2 Não \n", "34150 202515 NNE VD 49038 ZAAD BALM POS BARB 110g V4 Não \n", "34227 202515 NNE VD 48368 ZAAD ESPUM P/ BARB 200ml V4 Não \n", "\n", " Tipo de pedido Foco Unidade de negócio Marca ... \\\n", "39 Semanal Não BOT ARBO ... \n", "116 Semanal Não BOT ARBO ... \n", "193 Semanal Não BOT BOTI BABY ... \n", "270 Semanal Não BOT BOTI BABY ... \n", "347 Semanal Não BOT BOTI BABY ... \n", "... ... ... ... ... ... \n", "33919 Semanal Não BOT MAKE B. ... \n", "33996 Semanal Não BOT SOPHIE ... \n", "34073 Semanal Não BOT THE BLEND ... \n", "34150 Semanal Não BOT ZAAD ... \n", "34227 Semanal Não BOT ZAAD ... \n", "\n", " PICO DE VENDAS 2024 Pico Vendas Ultimos 6 ciclos CRESCIMENTO \\\n", "39 0.0 0.0 NaN \n", "116 0.0 0.0 NaN \n", "193 0.0 0.0 NaN \n", "270 0.0 0.0 NaN \n", "347 0.0 0.0 NaN \n", "... ... ... ... \n", "33919 0.0 0.0 NaN \n", "33996 0.0 0.0 NaN \n", "34073 0.0 0.0 NaN \n", "34150 0.0 0.0 NaN \n", "34227 0.0 0.0 NaN \n", "\n", " CRESCIMENTO_GERAL MEDIANA DO HISTÓRICO MEDIA DO HISTÓRICO med_por_canal \\\n", "39 0.2 0.0 0.0 0.0 \n", "116 0.2 0.0 0.0 0.0 \n", "193 0.2 0.0 0.0 3.0 \n", "270 0.2 0.0 0.0 3.0 \n", "347 0.2 0.0 0.0 8.0 \n", "... ... ... ... ... \n", "33919 0.2 0.0 0.0 0.0 \n", "33996 0.2 0.0 0.0 1.0 \n", "34073 0.2 0.0 0.0 17.0 \n", "34150 0.2 0.0 0.0 0.0 \n", "34227 0.2 0.0 0.0 1.0 \n", "\n", " CRESCIMENTO_FINAL PV GINSENG COBERTURA ATUAL \n", "39 NaN NaN NaN \n", "116 NaN NaN NaN \n", "193 NaN NaN NaN \n", "270 NaN NaN NaN \n", "347 NaN NaN NaN \n", "... ... ... ... \n", "33919 NaN NaN NaN \n", "33996 NaN NaN NaN \n", "34073 NaN NaN NaN \n", "34150 NaN NaN NaN \n", "34227 NaN NaN NaN \n", "\n", "[445 rows x 66 columns]" ] }, "execution_count": 114, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final_dedup[df_final_dedup['PDV'] == 21007]" ] }, { "cell_type": "code", "execution_count": 115, "metadata": {}, "outputs": [], "source": [ "df_final_dedup.drop(columns=['dias_ate_inicio','SKU_FINAL',\n", " 'CRESCIMENTO'],inplace=True)" ] }, { "cell_type": "code", "execution_count": 116, "metadata": {}, "outputs": [], "source": [ "df_final_dedup['INICIO CICLO'] = pd.to_datetime(df_final_dedup['INICIO CICLO'], dayfirst=True).dt.strftime('%d/%m/%Y')\n", "\n", "df_final_dedup['FIM CICLO'] = pd.to_datetime(df_final_dedup['FIM CICLO'], dayfirst=True).dt.strftime('%d/%m/%Y')" ] }, { "cell_type": "code", "execution_count": 117, "metadata": {}, "outputs": [], "source": [ "df_final_dedup['Percentual de desconto revendedor'] = np.where((df_final_dedup['Percentual de desconto revendedor'].isna()) & (~df_final_dedup['Percentual de desconto consumidor'].isna()),df_final_dedup['Percentual de desconto consumidor'],df_final_dedup['Percentual de desconto revendedor'])" ] }, { "cell_type": "code", "execution_count": 118, "metadata": {}, "outputs": [], "source": [ "df_pdv_origi['PDV'] = df_pdv_origi['PDV'].astype('Int64')\n", "df_final_dedup['PDV'] = df_final_dedup['PDV'].astype('Int64')\n", "\n", "\n", "df_final_dedup = pd.merge(left=df_final_dedup,right=df_pdv_origi[['PDV','CANAL','UF']],how='left',on='PDV')" ] }, { "cell_type": "code", "execution_count": 119, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "np.int64(0)" ] }, "execution_count": 119, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final_dedup['Código'].isna().sum()" ] }, { "cell_type": "code", "execution_count": 120, "metadata": {}, "outputs": [], "source": [ "df_irece_agrupado = df_irece.groupby(['PDV','Código','Ciclo'])['Quantidade'].sum().reset_index()" ] }, { "cell_type": "code", "execution_count": 121, "metadata": {}, "outputs": [], "source": [ "df_final_dedup = df_final_dedup.rename(columns={'CANAL_x':'CANAL','UF_X':'UF','Marca':'LINHA'})\n" ] }, { "cell_type": "code", "execution_count": 122, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "PDV\n", "12522 445\n", "12817 445\n", "12818 445\n", "12820 445\n", "12823 445\n", " ... \n", "24257 445\n", "24268 445\n", "24269 445\n", "24293 445\n", "23813 445\n", "Name: count, Length: 77, dtype: Int64" ] }, "execution_count": 122, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final_dedup['PDV'].value_counts()" ] }, { "cell_type": "code", "execution_count": 123, "metadata": {}, "outputs": [], "source": [ "df_final_dedup = df_final_dedup.rename(columns={'UF_x':'UF','DESCRICAO_y':'DESCRICAO'})" ] }, { "cell_type": "code", "execution_count": 124, "metadata": {}, "outputs": [], "source": [ "df_final_dedup = df_final_dedup.drop(columns={'CANAL_y', 'UF_y'})\n" ] }, { "cell_type": "code", "execution_count": 125, "metadata": {}, "outputs": [], "source": [ "df_final_dedup['Estoque Total'] = df_final_dedup['ESTOQUE ATUAL'].astype(float) + df_final_dedup['ESTOQUE EM TRANSITO'].astype(float) + df_final_dedup['PEDIDO PENDENTE'].astype(float)" ] }, { "cell_type": "code", "execution_count": 126, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'202415'" ] }, "execution_count": 126, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ciclo_ano_passado" ] }, { "cell_type": "code", "execution_count": 127, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['Ciclo_x', 'Região', 'Canal', 'Código', 'Descrição_x', 'IAF',\n", " 'Tipo de pedido', 'Foco', 'Unidade de negócio', 'LINHA', 'Categoria',\n", " 'Tipo de promoção', 'Catálogo', 'Tipo de produto', 'Ação consumidor',\n", " 'Percentual de desconto consumidor', 'Ação revendedor',\n", " 'Percentual de desconto revendedor', 'MATCH', 'PDV', 'CANAL',\n", " 'DESCRIÇÃO PDV', 'UF', 'ANALISTA', 'SUPERVISOR', 'SKU', 'curva',\n", " 'categoria', 'proj_mar', 'proj_mar+1', 'ESTOQUE ATUAL',\n", " 'ESTOQUE EM TRANSITO', 'PEDIDO PENDENTE', 'DDV PREVISTO', 'preço',\n", " '202412', '202415', 'C-4', 'C-3', 'C-2', 'C-1', 'Atual', 'INICIO CICLO',\n", " 'FIM CICLO', 'DURAÇÃO', 'Descrição_y', 'chave sku2', 'chave sku1',\n", " 'PRECO DE COMPRA', 'PRECO DE VENDA', 'UFPRODUTO', 'PDV GINSENG',\n", " 'PRODUTO', 'chave', 'PICO DE VENDAS 2024',\n", " 'Pico Vendas Ultimos 6 ciclos', 'CRESCIMENTO_GERAL',\n", " 'MEDIANA DO HISTÓRICO', 'MEDIA DO HISTÓRICO', 'med_por_canal',\n", " 'CRESCIMENTO_FINAL', 'PV GINSENG', 'COBERTURA ATUAL', 'Estoque Total'],\n", " dtype='object')" ] }, "execution_count": 127, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final_dedup.columns" ] }, { "cell_type": "code", "execution_count": 128, "metadata": {}, "outputs": [], "source": [ "df_final_dedup = df_final_dedup.drop(columns='Descrição_y')\n", "\n", "df_final_dedup = df_final_dedup.rename(columns={'Descrição_x':'Descrição'})" ] }, { "cell_type": "code", "execution_count": 129, "metadata": {}, "outputs": [], "source": [ "df_final_dedup = df_final_dedup[['DURAÇÃO','CANAL','ANALISTA','SUPERVISOR','UF','chave','PDV','DESCRIÇÃO PDV','Código','Descrição','LINHA','Categoria','curva','Percentual de desconto consumidor','Ação consumidor',\n", " 'Percentual de desconto revendedor','Ação revendedor','C-4', 'C-3', 'C-2', 'C-1','Atual',ciclo_ano_passado ,'ESTOQUE ATUAL','ESTOQUE EM TRANSITO','PEDIDO PENDENTE','Estoque Total',\n", " 'DDV PREVISTO','COBERTURA ATUAL','proj_mar', 'proj_mar+1','MEDIA DO HISTÓRICO','PICO DE VENDAS 2024','Pico Vendas Ultimos 6 ciclos','PRECO DE COMPRA',\n", " 'PRECO DE VENDA','PV GINSENG']]" ] }, { "cell_type": "code", "execution_count": 130, "metadata": {}, "outputs": [], "source": [ "df_final_dedup['Percentual de desconto revendedor'] = np.where(df_final_dedup['Percentual de desconto revendedor'] == '0,00', df_final_dedup['Percentual de desconto consumidor'],df_final_dedup['Percentual de desconto revendedor'])" ] }, { "cell_type": "code", "execution_count": 131, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'202415'" ] }, "execution_count": 131, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ciclo_ano_passado" ] }, { "cell_type": "code", "execution_count": 132, "metadata": {}, "outputs": [], "source": [ "df_final_dedup = df_final_dedup.drop_duplicates()" ] }, { "cell_type": "code", "execution_count": 133, "metadata": {}, "outputs": [], "source": [ "df_final_dedup['Valor Sugestão'] = \"\"\n", "\n", "df_final_dedup['Sugestão Abastecimento'] = \"\"" ] }, { "cell_type": "code", "execution_count": 134, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "DDV PREVISTO float64\n", "COBERTURA ATUAL float64\n", "dtype: object" ] }, "execution_count": 134, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final_dedup[['DDV PREVISTO',\n", " 'COBERTURA ATUAL',]].dtypes" ] }, { "cell_type": "code", "execution_count": 135, "metadata": {}, "outputs": [], "source": [ "df_final_dedup[ 'DDV PREVISTO'] = df_final_dedup['DDV PREVISTO'].fillna(0)\n", "\n", "df_final_dedup = df_final_dedup.drop_duplicates()" ] }, { "cell_type": "code", "execution_count": 136, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DURAÇÃOCANALANALISTASUPERVISORUFchavePDVDESCRIÇÃO PDVCódigoDescrição...proj_marproj_mar+1MEDIA DO HISTÓRICOPICO DE VENDAS 2024Pico Vendas Ultimos 6 ciclosPRECO DE COMPRAPRECO DE VENDAPV GINSENGValor SugestãoSugestão Abastecimento
3217121VDJEFFERSONJuliana VasconcelosVDC237118438723711ER VITORIA DA CONQUISTA84387MALBEC DES COL V6 100ml...1505.0242.0612.3888892734.0857.00.00.012.0
\n", "

1 rows × 39 columns

\n", "
" ], "text/plain": [ " DURAÇÃO CANAL ANALISTA SUPERVISOR UF chave PDV \\\n", "32171 21 VD JEFFERSON Juliana Vasconcelos VDC 2371184387 23711 \n", "\n", " DESCRIÇÃO PDV Código Descrição ... proj_mar \\\n", "32171 ER VITORIA DA CONQUISTA 84387 MALBEC DES COL V6 100ml ... 1505.0 \n", "\n", " proj_mar+1 MEDIA DO HISTÓRICO PICO DE VENDAS 2024 \\\n", "32171 242.0 612.388889 2734.0 \n", "\n", " Pico Vendas Ultimos 6 ciclos PRECO DE COMPRA PRECO DE VENDA PV GINSENG \\\n", "32171 857.0 0.0 0.0 12.0 \n", "\n", " Valor Sugestão Sugestão Abastecimento \n", "32171 \n", "\n", "[1 rows x 39 columns]" ] }, "execution_count": 136, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final_dedup[df_final_dedup['chave'] == '2371184387'].head()" ] }, { "cell_type": "code", "execution_count": 137, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "32171 88.7\n", "Name: DDV PREVISTO, dtype: float64" ] }, "execution_count": 137, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final_dedup[df_final_dedup['chave'] == '2371184387']['DDV PREVISTO'].head()\n" ] }, { "cell_type": "code", "execution_count": 138, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DURAÇÃOCANALANALISTASUPERVISORUFchavePDVDESCRIÇÃO PDVCódigoDescrição...proj_marproj_mar+1MEDIA DO HISTÓRICOPICO DE VENDAS 2024Pico Vendas Ultimos 6 ciclosPRECO DE COMPRAPRECO DE VENDAPV GINSENGValor SugestãoSugestão Abastecimento
021TODOSLUANEfigênia HerculanoAL125225005212522MACEIO SHOP EXP50052ARBO LOC DES HID CPO 75ml...1.00.00.1111112.00.011.7237.90.0
121TODOSJEFFERSONMaxwell VieiraAL128175005212817SHOPPING PATIO50052ARBO LOC DES HID CPO 75ml...1.00.00.5555565.00.011.7237.91.0
221TODOSPEDROMaxwell VieiraAL128185005212818GB SERRARIA50052ARBO LOC DES HID CPO 75ml...0.00.00.0555561.01.011.7237.90.0
321TODOSTHAYLLANMaxwell VieiraAL128205005212820ATACADÃO50052ARBO LOC DES HID CPO 75ml...0.00.00.0555561.00.011.7237.90.0
421TODOSMARCYARAEfigênia HerculanoAL128235005212823PONTA VERDE50052ARBO LOC DES HID CPO 75ml...0.00.00.1111111.00.011.7237.90.0
\n", "

5 rows × 39 columns

\n", "
" ], "text/plain": [ " DURAÇÃO CANAL ANALISTA SUPERVISOR UF chave PDV \\\n", "0 21 TODOS LUAN Efigênia Herculano AL 1252250052 12522 \n", "1 21 TODOS JEFFERSON Maxwell Vieira AL 1281750052 12817 \n", "2 21 TODOS PEDRO Maxwell Vieira AL 1281850052 12818 \n", "3 21 TODOS THAYLLAN Maxwell Vieira AL 1282050052 12820 \n", "4 21 TODOS MARCYARA Efigênia Herculano AL 1282350052 12823 \n", "\n", " DESCRIÇÃO PDV Código Descrição ... proj_mar \\\n", "0 MACEIO SHOP EXP 50052 ARBO LOC DES HID CPO 75ml ... 1.0 \n", "1 SHOPPING PATIO 50052 ARBO LOC DES HID CPO 75ml ... 1.0 \n", "2 GB SERRARIA 50052 ARBO LOC DES HID CPO 75ml ... 0.0 \n", "3 ATACADÃO 50052 ARBO LOC DES HID CPO 75ml ... 0.0 \n", "4 PONTA VERDE 50052 ARBO LOC DES HID CPO 75ml ... 0.0 \n", "\n", " proj_mar+1 MEDIA DO HISTÓRICO PICO DE VENDAS 2024 \\\n", "0 0.0 0.111111 2.0 \n", "1 0.0 0.555556 5.0 \n", "2 0.0 0.055556 1.0 \n", "3 0.0 0.055556 1.0 \n", "4 0.0 0.111111 1.0 \n", "\n", " Pico Vendas Ultimos 6 ciclos PRECO DE COMPRA PRECO DE VENDA PV GINSENG \\\n", "0 0.0 11.72 37.9 0.0 \n", "1 0.0 11.72 37.9 1.0 \n", "2 1.0 11.72 37.9 0.0 \n", "3 0.0 11.72 37.9 0.0 \n", "4 0.0 11.72 37.9 0.0 \n", "\n", " Valor Sugestão Sugestão Abastecimento \n", "0 \n", "1 \n", "2 \n", "3 \n", "4 \n", "\n", "[5 rows x 39 columns]" ] }, "execution_count": 138, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_final_dedup.head()" ] }, { "cell_type": "code", "execution_count": 139, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['DURAÇÃO', 'CANAL', 'ANALISTA', 'SUPERVISOR', 'UF', 'chave', 'PDV',\n", " 'DESCRIÇÃO PDV', 'Código', 'Descrição', 'LINHA', 'Categoria', 'curva',\n", " 'Percentual de desconto consumidor', 'Ação consumidor',\n", " 'Percentual de desconto revendedor', 'Ação revendedor', 'C-4', 'C-3',\n", " 'C-2', 'C-1', 'Atual', '202415', 'ESTOQUE ATUAL', 'ESTOQUE EM TRANSITO',\n", " 'PEDIDO PENDENTE', 'Estoque Total', 'DDV PREVISTO', 'COBERTURA ATUAL',\n", " 'proj_mar', 'proj_mar+1', 'MEDIA DO HISTÓRICO', 'PICO DE VENDAS 2024',\n", " 'Pico Vendas Ultimos 6 ciclos', 'PRECO DE COMPRA', 'PRECO DE VENDA',\n", " 'PV GINSENG', 'Valor Sugestão', 'Sugestão Abastecimento',\n", " 'CANAL_CERTO'],\n", " dtype='object')" ] }, "execution_count": 139, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_pdv_origi['PDV'] = df_pdv_origi['PDV'].astype('Int64')\n", "\n", "\n", "\n", "df_pdv_origi = df_pdv_origi.rename(columns={'CANAL':'CANAL_CERTO'})\n", "\n", "df_final_dedup= pd.merge(df_final_dedup,df_pdv_origi[['PDV','CANAL_CERTO']],on='PDV',how='inner')\n", "\n", "df_final_dedup['CANAL']= df_final_dedup['CANAL_CERTO']\n", "\n", "\n", "df_final_dedup.columns" ] }, { "cell_type": "code", "execution_count": 140, "metadata": {}, "outputs": [], "source": [ "# Export to Excel\n", "output_file = f'C:\\\\Users\\\\joao.herculano\\\\Documents\\\\promoção_BOTI_{ciclo_mais2}.{hoje}.xlsx'\n", "with pd.ExcelWriter(output_file, engine='openpyxl') as writer:\n", " df_final_dedup.to_excel(writer, index=False)\n", "\n", "# Apply styles\n", "wb = load_workbook(output_file)\n", "ws = wb['Sheet1']\n", "\n", "# Style header\n", "header_fill = PatternFill(start_color='ADD8E6', end_color='ADD8E6', fill_type='solid') # Light Blue\n", "header_font = Font(color='FFFFFF', bold=True) # White & Bold\n", "\n", "for cell in ws[1]:\n", " cell.fill = header_fill\n", " cell.font = header_font\n", "\n", "# Style rows: gray/white alternating\n", "gray_fill = PatternFill(start_color='DDDDDD', end_color='DDDDDD', fill_type='solid') # Light gray\n", "\n", "for i, row in enumerate(ws.iter_rows(min_row=2, max_row=ws.max_row), start=2):\n", " if i % 2 == 0:\n", " for cell in row:\n", " cell.fill = gray_fill\n", "\n", "# Save styled workbook\n", "wb.save(output_file)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "coisas q saem\n", "\n", "Lançamento\n", "Subcategoria\n", "Projeção Próximo Ciclo \n", "Promoção Próximo Ciclo\n", "Compra inteligente semanal/Sugestão de compra\n", "Compra inteligente Próximo Ciclo\n", "Planograma\n", "Carteira Bloqueada Para Novos Pedidos\n", "Quantidade por caixa\n", "Preço Sell In\n", "Quantidade\n", "Item analisado\n", "Tipo Preço\n", "\n", ">>>>>>>>>>>>>NAO ESTÁ PEGANDO O MERGE COM O DF_ESTOQUE\n", "\n", "\n", "CRIAR PROJEÇÃO DE VENDA DO CICLO ATUAL\n", "Compra inteligente Próximo Ciclo + 1 >>>>>>> RENAME PRA NOROMAL" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.2" } }, "nbformat": 4, "nbformat_minor": 2 }