4814 lines
153 KiB
Plaintext
4814 lines
153 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "6ad35669",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"import numpy as np \n",
|
||
"import glob\n",
|
||
"import os \n",
|
||
"\n",
|
||
"from datetime import datetime\n",
|
||
"from openpyxl import load_workbook\n",
|
||
"from openpyxl.styles import PatternFill, Font"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "fa16d50c",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"hoje = datetime.today().strftime('%Y-%m-%d')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"id": "9fcdc77a",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"calendario = pd.read_excel(r\"..\\\\..\\\\SUPRIMENTOS\\BD_LANÇAMENTOS\\BOT\\arquivos usados por todos os lançamentos\\Ciclo_Expandido_com_Datas.xlsx\")\n",
|
||
"\n",
|
||
"calendario['Date'] = pd.to_datetime(calendario['Date'])\n",
|
||
"\n",
|
||
"# Get today (normalized to midnight)\n",
|
||
"today = pd.Timestamp(\"today\").normalize()\n",
|
||
"\n",
|
||
"calendario['NUM_CICLO'] = calendario['Ciclo'].str[-2:].astype(int)\n",
|
||
"\n",
|
||
"calendario['ANO_CICLO'] = calendario['Ciclo'].str[0:5]\n",
|
||
"\n",
|
||
"calendario = calendario[calendario['MARCA'] == \"BOTICARIO\"]\n",
|
||
"\n",
|
||
"calendario['CICLOMAIS2'] = calendario['ANO_CICLO'].astype(str) + (calendario['NUM_CICLO'].astype(int) + 2).astype(str).str.zfill(2) #<<< MUDAR O \"4\" (CICLO ATUAL + 4 PARA ACHAR O CICLO DA SUGESTÃO) EX: C202505 -> C202509\n",
|
||
"ciclo_mais2 = calendario[calendario['Date'].dt.normalize() == today]['CICLOMAIS2'].iloc[0]\n",
|
||
"\n",
|
||
"# Filter rows where date matches today\n",
|
||
"filtered_calendario = calendario[calendario['Ciclo'] == ciclo_mais2][:1]\n",
|
||
"\n",
|
||
"filtered_calendario['dias_ate_inicio'] = filtered_calendario['INICIO CICLO'].iloc[0] - today\n",
|
||
"\n",
|
||
"filtered_calendario['dias_ate_inicio'] = filtered_calendario['dias_ate_inicio'].dt.days.astype(int)\n",
|
||
"\n",
|
||
"filtered_calendario['match'] = 1\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"id": "bbec229d",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>Ciclo</th>\n",
|
||
" <th>INICIO CICLO</th>\n",
|
||
" <th>FIM CICLO</th>\n",
|
||
" <th>DURAÇÃO</th>\n",
|
||
" <th>MARCA</th>\n",
|
||
" <th>Date</th>\n",
|
||
" <th>NUM_CICLO</th>\n",
|
||
" <th>ANO_CICLO</th>\n",
|
||
" <th>CICLOMAIS2</th>\n",
|
||
" <th>dias_ate_inicio</th>\n",
|
||
" <th>match</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>2507</th>\n",
|
||
" <td>C202517</td>\n",
|
||
" <td>2025-12-01</td>\n",
|
||
" <td>2025-12-25</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>BOTICARIO</td>\n",
|
||
" <td>2025-12-01</td>\n",
|
||
" <td>17</td>\n",
|
||
" <td>C2025</td>\n",
|
||
" <td>C202519</td>\n",
|
||
" <td>45</td>\n",
|
||
" <td>1</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" Ciclo INICIO CICLO FIM CICLO DURAÇÃO MARCA Date \\\n",
|
||
"2507 C202517 2025-12-01 2025-12-25 25 BOTICARIO 2025-12-01 \n",
|
||
"\n",
|
||
" NUM_CICLO ANO_CICLO CICLOMAIS2 dias_ate_inicio match \n",
|
||
"2507 17 C2025 C202519 45 1 "
|
||
]
|
||
},
|
||
"execution_count": 11,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"filtered_calendario"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"id": "0245ed28",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"ciclo_lanc = filtered_calendario['Ciclo'].max()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"id": "7a3c1e6f",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"'C202517'"
|
||
]
|
||
},
|
||
"execution_count": 13,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"ciclo_lanc"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 15,
|
||
"id": "61ffc777",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"#COLOCAR ARQUIVO SIMILAR AQUI (ALTERAR)\n",
|
||
"\n",
|
||
"arquivo_similares = r\"C:\\Users\\joao.herculano\\GRUPO GINSENG\\Assistência Suprimentos - 2025\\SUPRIMENTOS\\BD_LANÇAMENTOS\\BOT\\BOT - C17\\arquivos para geração da sugestão\\similar novo splash\\PRODUTOS SIMILARES - BOT(body splash).xlsx\"\n",
|
||
"\n",
|
||
"df_similares = pd.read_excel(arquivo_similares)\n",
|
||
"\n",
|
||
"df_similares = pd.merge(left=df_similares,right=calendario[['Ciclo','INICIO CICLO','FIM CICLO','DURAÇÃO']], how= 'left', left_on = 'CICLO SIMILAR',right_on = 'Ciclo' )\n",
|
||
"\n",
|
||
"df_similares = df_similares.drop(columns=['Ciclo'])\n",
|
||
"\n",
|
||
"df_similares = df_similares.rename(columns={'INICIO CICLO':'INICIO CICLO SIMILAR','FIM CICLO':'FIM CICLO SIMILAR','DURAÇÃO':'DURAÇÃO CICLO SIMILAR'})\n",
|
||
"df_similares.drop_duplicates(inplace=True)\n",
|
||
"\n",
|
||
"df_similares['MATCH'] = 1\n",
|
||
"\n",
|
||
"df_similares = df_similares.drop(columns=['INICIO DO CICLO', 'FIM DO CICLO', 'DURAÇÃO CICLO','INICIO CICLO SIMILAR','FIM CICLO SIMILAR','DURAÇÃO CICLO SIMILAR'])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 16,
|
||
"id": "7eaf9237",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>PRODUTO LANÇAMENTO</th>\n",
|
||
" <th>DESCRIÇÃO DO LANÇAMENTO</th>\n",
|
||
" <th>PRODUTO SIMILAR</th>\n",
|
||
" <th>DESCRIÇÃO SIMILAR</th>\n",
|
||
" <th>CICLO SIMILAR</th>\n",
|
||
" <th>FOCO</th>\n",
|
||
" <th>IAF</th>\n",
|
||
" <th>CATEGORIA</th>\n",
|
||
" <th>MARCA</th>\n",
|
||
" <th>% CONSUMIDOR</th>\n",
|
||
" <th>MECANICA CONSUMIDOR</th>\n",
|
||
" <th>% REVENDEDOR</th>\n",
|
||
" <th>MECANICA REVENDEDOR</th>\n",
|
||
" <th>TIPO DE PRODUTO</th>\n",
|
||
" <th>MATCH</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ...</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>Body Splash Desodrante Colônia Cuide-se Bem Nu...</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>PERFUMARIA</td>\n",
|
||
" <td>CUIDE-SE BEM</td>\n",
|
||
" <td>-</td>\n",
|
||
" <td>-</td>\n",
|
||
" <td>-</td>\n",
|
||
" <td>-</td>\n",
|
||
" <td>REGULAR</td>\n",
|
||
" <td>1</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" PRODUTO LANÇAMENTO DESCRIÇÃO DO LANÇAMENTO \\\n",
|
||
"0 86116 CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ... \n",
|
||
"\n",
|
||
" PRODUTO SIMILAR DESCRIÇÃO SIMILAR \\\n",
|
||
"0 58363 Body Splash Desodrante Colônia Cuide-se Bem Nu... \n",
|
||
"\n",
|
||
" CICLO SIMILAR FOCO IAF CATEGORIA MARCA % CONSUMIDOR \\\n",
|
||
"0 C202506 Não Não PERFUMARIA CUIDE-SE BEM - \n",
|
||
"\n",
|
||
" MECANICA CONSUMIDOR % REVENDEDOR MECANICA REVENDEDOR TIPO DE PRODUTO MATCH \n",
|
||
"0 - - - REGULAR 1 "
|
||
]
|
||
},
|
||
"execution_count": 16,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_similares.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 17,
|
||
"id": "ad836441",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"#TRANSFORMA A COLUNA EM STRING\n",
|
||
"df_similares['PRODUTO SIMILAR'] = df_similares['PRODUTO SIMILAR'].astype('str')\n",
|
||
"# TIRA O '.0' DO FIM SE OCORRER\n",
|
||
"df_similares['PRODUTO SIMILAR'] = df_similares['PRODUTO SIMILAR'].replace(r'\\.0$', '', regex=True)\n",
|
||
"\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 19,
|
||
"id": "fe922f62",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# SEMPRE COLOCAR O DO USUARIO.(ALTERAR)\n",
|
||
"df_tabela = pd.read_excel(r\"C:\\Users\\joao.herculano\\GRUPO GINSENG\\Assistência Suprimentos - 2025\\SUPRIMENTOS\\BD_LANÇAMENTOS\\BOT\\BOT - C17\\arquivos para geração da sugestão\\TABELA DE PEDIDO\\Pedidos Semanais Especiais - BOT - 202517.xlsx\")\n",
|
||
"\n",
|
||
"# FILTRA REGIÃO = NORDESTE\n",
|
||
"df_tabela = df_tabela[df_tabela['Região'] == 'NNE'] \n",
|
||
"# TIRA CANAL ECOMERCE DO PLANILHA\n",
|
||
"df_tabela = df_tabela[(df_tabela['Canal'] != 'Ecomm') | (df_tabela['Canal'] != 'Ecomm | VD') | (df_tabela['Canal'] != 'Ecomm | Loja')] \n",
|
||
"# UNIFICA DESCONTOS CANAL LOJA\n",
|
||
"df_tabela['Canal'] = np.where((df_tabela['Canal'] == \"Loja\") | (df_tabela['Canal'] == \"Todos\") | (df_tabela['Canal'] == \"Loja | VD\"),\"TODOS\",\"VD\")\n",
|
||
"# SÓ MANTÉM LANÇAMENTOS \n",
|
||
"df_tabela = df_tabela[df_tabela['Tipo de promoção'].str.contains('Lançamentos', na=False)]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"id": "e0c55962",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_pdv = pd.read_excel(r\"..\\\\..\\\\SUPRIMENTOS\\BD_LANÇAMENTOS\\BOT\\BOT - C16\\arquivos para geração da sugestão\\PDV\\PDV_ATT.xlsx\")\n",
|
||
"# remove lojas QDB\n",
|
||
"df_pdv = df_pdv[~df_pdv['PDV'].isin([910173, 910291])]\n",
|
||
"\n",
|
||
"#feito para retificar os UFS ao fim do script\n",
|
||
"df_pdv_origi = pd.read_excel(r\"..\\\\..\\\\SUPRIMENTOS\\BD_LANÇAMENTOS\\BOT\\BOT - C16\\arquivos para geração da sugestão\\PDV\\PDV_ATT.xlsx\")\n",
|
||
"df_pdv_origi = df_pdv_origi[~df_pdv_origi['PDV'].isin([910173, 910291])]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 21,
|
||
"id": "a7b41ecb",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>PDV</th>\n",
|
||
" <th>CANAL</th>\n",
|
||
" <th>DESCRIÇÃO</th>\n",
|
||
" <th>PDV DESC</th>\n",
|
||
" <th>REGIÃO</th>\n",
|
||
" <th>ESTADO</th>\n",
|
||
" <th>CIDADE</th>\n",
|
||
" <th>UF</th>\n",
|
||
" <th>MARCA</th>\n",
|
||
" <th>ANALISTA</th>\n",
|
||
" <th>GESTÃO</th>\n",
|
||
" <th>SUPERVISOR</th>\n",
|
||
" <th>STATUS</th>\n",
|
||
" <th>ANALISTA EUD</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>23156</td>\n",
|
||
" <td>LJ</td>\n",
|
||
" <td>SHOPPING CENTRO SUL</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>SERGIPE</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>SE</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>Inativa</td>\n",
|
||
" <td>Inativa</td>\n",
|
||
" <td>Inativa</td>\n",
|
||
" <td>INATIVO</td>\n",
|
||
" <td>LOJA</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>4494</td>\n",
|
||
" <td>MTZ</td>\n",
|
||
" <td>ESCRITORIO</td>\n",
|
||
" <td>4494-COMERCIO-PONTA VERDE-MACEIO</td>\n",
|
||
" <td>ND</td>\n",
|
||
" <td>ALAGOAS</td>\n",
|
||
" <td>MACEIÓ</td>\n",
|
||
" <td>AL</td>\n",
|
||
" <td>CP GINSENG</td>\n",
|
||
" <td>Inativa</td>\n",
|
||
" <td>Inativa</td>\n",
|
||
" <td>Inativa</td>\n",
|
||
" <td>INATIVO</td>\n",
|
||
" <td>INATIVO</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>1137</td>\n",
|
||
" <td>MTZ</td>\n",
|
||
" <td>AMG</td>\n",
|
||
" <td>1137-AMG SERRARIA</td>\n",
|
||
" <td>ND</td>\n",
|
||
" <td>ALAGOAS</td>\n",
|
||
" <td>MACEIÓ</td>\n",
|
||
" <td>AL</td>\n",
|
||
" <td>O BOTICARIO</td>\n",
|
||
" <td>Inativa</td>\n",
|
||
" <td>Inativa</td>\n",
|
||
" <td>Inativa</td>\n",
|
||
" <td>INATIVO</td>\n",
|
||
" <td>INATIVO</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>12522</td>\n",
|
||
" <td>LJ</td>\n",
|
||
" <td>MACEIO SHOP EXP</td>\n",
|
||
" <td>12522-COMERCIO -MACEIO SHOP EXPANSAO</td>\n",
|
||
" <td>MCZ BAIXA</td>\n",
|
||
" <td>ALAGOAS</td>\n",
|
||
" <td>MACEIÓ</td>\n",
|
||
" <td>AL</td>\n",
|
||
" <td>O BOTICARIO</td>\n",
|
||
" <td>LUAN</td>\n",
|
||
" <td>Betina Melo</td>\n",
|
||
" <td>Efigênia Herculano</td>\n",
|
||
" <td>ATIVO</td>\n",
|
||
" <td>LOJA</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>12817</td>\n",
|
||
" <td>LJ</td>\n",
|
||
" <td>SHOPPING PATIO</td>\n",
|
||
" <td>12817-COMERCIO -SHOPPING PATIO</td>\n",
|
||
" <td>MCZ ALTA</td>\n",
|
||
" <td>ALAGOAS</td>\n",
|
||
" <td>MACEIÓ</td>\n",
|
||
" <td>AL</td>\n",
|
||
" <td>O BOTICARIO</td>\n",
|
||
" <td>JEFFERSON</td>\n",
|
||
" <td>Pamella Barbosa</td>\n",
|
||
" <td>Maxwell Vieira</td>\n",
|
||
" <td>ATIVO</td>\n",
|
||
" <td>LOJA</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>...</th>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>79</th>\n",
|
||
" <td>24257</td>\n",
|
||
" <td>HIB</td>\n",
|
||
" <td>Miguel Calmon</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>BA3</td>\n",
|
||
" <td>O BOTICARIO</td>\n",
|
||
" <td>THAYLLAN</td>\n",
|
||
" <td>Caio Luna</td>\n",
|
||
" <td>FERNANDA</td>\n",
|
||
" <td>ATIVO</td>\n",
|
||
" <td>HARY</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>80</th>\n",
|
||
" <td>24268</td>\n",
|
||
" <td>LJ</td>\n",
|
||
" <td>COMERCIO-LJ JACOBINA</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>BA3</td>\n",
|
||
" <td>O BOTICARIO</td>\n",
|
||
" <td>THAYLLAN</td>\n",
|
||
" <td>Caio Luna</td>\n",
|
||
" <td>FERNANDA</td>\n",
|
||
" <td>ATIVO</td>\n",
|
||
" <td>LOJA</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>81</th>\n",
|
||
" <td>24269</td>\n",
|
||
" <td>VD</td>\n",
|
||
" <td>COMERCIO-ER JACOBINA</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>BA3</td>\n",
|
||
" <td>O BOTICARIO</td>\n",
|
||
" <td>JEFFERSON</td>\n",
|
||
" <td>Caio Luna</td>\n",
|
||
" <td>FERNANDA</td>\n",
|
||
" <td>ATIVO</td>\n",
|
||
" <td>HARY</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>82</th>\n",
|
||
" <td>24293</td>\n",
|
||
" <td>HIB</td>\n",
|
||
" <td>COMERCIO-HIB MORRO DO CHAPEU</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>BA3</td>\n",
|
||
" <td>O BOTICARIO</td>\n",
|
||
" <td>MARCYARA</td>\n",
|
||
" <td>Alysson</td>\n",
|
||
" <td>FERNANDA</td>\n",
|
||
" <td>ATIVO</td>\n",
|
||
" <td>DIELLY</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>85</th>\n",
|
||
" <td>23813</td>\n",
|
||
" <td>HIB</td>\n",
|
||
" <td>VALENTE</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>BA</td>\n",
|
||
" <td>O BOTICARIO</td>\n",
|
||
" <td>MARCYARA</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>CLÁUDIA</td>\n",
|
||
" <td>ATIVO</td>\n",
|
||
" <td>HARY</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"<p>84 rows × 14 columns</p>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" PDV CANAL DESCRIÇÃO \\\n",
|
||
"0 23156 LJ SHOPPING CENTRO SUL \n",
|
||
"1 4494 MTZ ESCRITORIO \n",
|
||
"2 1137 MTZ AMG \n",
|
||
"3 12522 LJ MACEIO SHOP EXP \n",
|
||
"4 12817 LJ SHOPPING PATIO \n",
|
||
".. ... ... ... \n",
|
||
"79 24257 HIB Miguel Calmon \n",
|
||
"80 24268 LJ COMERCIO-LJ JACOBINA \n",
|
||
"81 24269 VD COMERCIO-ER JACOBINA \n",
|
||
"82 24293 HIB COMERCIO-HIB MORRO DO CHAPEU \n",
|
||
"85 23813 HIB VALENTE \n",
|
||
"\n",
|
||
" PDV DESC REGIÃO ESTADO CIDADE UF \\\n",
|
||
"0 NaN NaN SERGIPE NaN SE \n",
|
||
"1 4494-COMERCIO-PONTA VERDE-MACEIO ND ALAGOAS MACEIÓ AL \n",
|
||
"2 1137-AMG SERRARIA ND ALAGOAS MACEIÓ AL \n",
|
||
"3 12522-COMERCIO -MACEIO SHOP EXPANSAO MCZ BAIXA ALAGOAS MACEIÓ AL \n",
|
||
"4 12817-COMERCIO -SHOPPING PATIO MCZ ALTA ALAGOAS MACEIÓ AL \n",
|
||
".. ... ... ... ... ... \n",
|
||
"79 NaN NaN NaN NaN BA3 \n",
|
||
"80 NaN NaN NaN NaN BA3 \n",
|
||
"81 NaN NaN NaN NaN BA3 \n",
|
||
"82 NaN NaN NaN NaN BA3 \n",
|
||
"85 NaN NaN NaN NaN BA \n",
|
||
"\n",
|
||
" MARCA ANALISTA GESTÃO SUPERVISOR STATUS \\\n",
|
||
"0 NaN Inativa Inativa Inativa INATIVO \n",
|
||
"1 CP GINSENG Inativa Inativa Inativa INATIVO \n",
|
||
"2 O BOTICARIO Inativa Inativa Inativa INATIVO \n",
|
||
"3 O BOTICARIO LUAN Betina Melo Efigênia Herculano ATIVO \n",
|
||
"4 O BOTICARIO JEFFERSON Pamella Barbosa Maxwell Vieira ATIVO \n",
|
||
".. ... ... ... ... ... \n",
|
||
"79 O BOTICARIO THAYLLAN Caio Luna FERNANDA ATIVO \n",
|
||
"80 O BOTICARIO THAYLLAN Caio Luna FERNANDA ATIVO \n",
|
||
"81 O BOTICARIO JEFFERSON Caio Luna FERNANDA ATIVO \n",
|
||
"82 O BOTICARIO MARCYARA Alysson FERNANDA ATIVO \n",
|
||
"85 O BOTICARIO MARCYARA NaN CLÁUDIA ATIVO \n",
|
||
"\n",
|
||
" ANALISTA EUD \n",
|
||
"0 LOJA \n",
|
||
"1 INATIVO \n",
|
||
"2 INATIVO \n",
|
||
"3 LOJA \n",
|
||
"4 LOJA \n",
|
||
".. ... \n",
|
||
"79 HARY \n",
|
||
"80 LOJA \n",
|
||
"81 HARY \n",
|
||
"82 DIELLY \n",
|
||
"85 HARY \n",
|
||
"\n",
|
||
"[84 rows x 14 columns]"
|
||
]
|
||
},
|
||
"execution_count": 21,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_pdv"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 22,
|
||
"id": "a3a045d9",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"\n",
|
||
"#trativa de dados\n",
|
||
"\n",
|
||
"df_pdv = df_pdv.rename(columns={'DESCRIÇÃO':'DESCRIÇÃO PDV'})\n",
|
||
"\n",
|
||
"df_pdv = df_pdv.drop(columns=['REGIÃO', 'ESTADO','CIDADE','GESTÃO','MARCA'])\n",
|
||
"\n",
|
||
"df_pdv['UF'] = np.where((df_pdv['UF'] == 'VDC') | (df_pdv['UF'] == 'BA3'),'BA',df_pdv['UF'])\n",
|
||
"\n",
|
||
"df_pdv = df_pdv[df_pdv['STATUS'] != \"INATIVO\"]\n",
|
||
"\n",
|
||
"df_pdv = df_pdv[df_pdv['STATUS'] != \"MATRIZ\"]\n",
|
||
"\n",
|
||
"df_pdv = df_pdv[df_pdv['SUPERVISOR'] != 'Inativa']\n",
|
||
"\n",
|
||
"df_pdv['MATCH'] = 1"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 23,
|
||
"id": "df04a501",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# DISTRIBUINDO OS PDVS PARA OS SIMILARES\n",
|
||
"df_similares = pd.merge(left=df_similares,right=df_pdv,right_on=['MATCH'],left_on=['MATCH'],how='inner')\n",
|
||
"\n",
|
||
"df_similares = df_similares.drop_duplicates()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 24,
|
||
"id": "f229ed0f",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"PRODUTO LANÇAMENTO\n",
|
||
"86116 76\n",
|
||
"Name: count, dtype: int64"
|
||
]
|
||
},
|
||
"execution_count": 24,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"#CHECAGEM DE QTD PDVS POR PRODUTO LANÇAMENTO.\n",
|
||
"df_similares['PRODUTO LANÇAMENTO'].value_counts()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 25,
|
||
"id": "0da911af",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"C:\\Users\\joao.herculano\\AppData\\Local\\Temp\\ipykernel_28176\\3630339320.py:39: UserWarning: pandas only supports SQLAlchemy connectable (engine/connection) or database string URI or sqlite3 DBAPI2 connection. Other DBAPI2 objects are not tested. Please consider using SQLAlchemy.\n",
|
||
" dfi = pd.read_sql_query(query, conn)\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"import pyodbc\n",
|
||
"import configparser\n",
|
||
"\n",
|
||
"#query de vendas por ciclo\n",
|
||
"\n",
|
||
"config = configparser.ConfigParser()\n",
|
||
"config.read(r\"../../SUPRIMENTOS/BD_LANÇAMENTOS/BOT/arquivos usados por todos os lançamentos/credenciais.ini\")\n",
|
||
"\n",
|
||
"conn = pyodbc.connect(\n",
|
||
" f\"DRIVER={{SQL Server}};\"\n",
|
||
" f\"SERVER={config['banco']['host']},1433;\"\n",
|
||
" f\"DATABASE=GINSENG;\"\n",
|
||
" f\"UID={config['banco']['user']};\"\n",
|
||
" f\"PWD={config['banco']['password']}\"\n",
|
||
")\n",
|
||
"\n",
|
||
"query = f'''\n",
|
||
"SELECT \n",
|
||
" B.PDV, \n",
|
||
" B.SKU,\n",
|
||
" bd.SKU2, \n",
|
||
" COALESCE(bd.SKU2, b.SKU) AS SKU_FINAL,\n",
|
||
" B.DESCRICAO,\n",
|
||
" SUM(CAST(b.VENDAS AS DECIMAL(18,2))) AS VENDAS_CICLO,\n",
|
||
" C.Ciclo\n",
|
||
"FROM base_vendas_bi b\n",
|
||
"INNER JOIN ciclos_data_2025 c \n",
|
||
" ON CAST(b.[DATA] AS DATE) = CONVERT(DATE, c.[Date], 103) AND C.MARCA = 'BOT'\n",
|
||
"LEFT JOIN base_depara bd on b.SKU = bd.SKU \n",
|
||
"WHERE CAST(b.[DATA] AS DATE) >= DATEADD(YEAR, -1, GETDATE())\n",
|
||
"GROUP BY\n",
|
||
" B.PDV, \n",
|
||
" B.SKU,\n",
|
||
" bd.SKU2,\n",
|
||
" B.DESCRICAO,\n",
|
||
" C.Ciclo\n",
|
||
"HAVING SUM(CAST(b.VENDAS AS DECIMAL(18,2))) > 0\n",
|
||
"'''\n",
|
||
"dfi = pd.read_sql_query(query, conn)\n",
|
||
"conn.close()\n",
|
||
"\n",
|
||
"dfi['SKU2'] = dfi['SKU2'].fillna(\"-\")\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 26,
|
||
"id": "20634105",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>PDV</th>\n",
|
||
" <th>SKU_FINAL</th>\n",
|
||
" <th>DESCRICAO</th>\n",
|
||
" <th>C202415</th>\n",
|
||
" <th>C202416</th>\n",
|
||
" <th>C202417</th>\n",
|
||
" <th>C202501</th>\n",
|
||
" <th>C202502</th>\n",
|
||
" <th>C202503</th>\n",
|
||
" <th>C202504</th>\n",
|
||
" <th>...</th>\n",
|
||
" <th>C202506</th>\n",
|
||
" <th>C202507</th>\n",
|
||
" <th>C202508</th>\n",
|
||
" <th>C202509</th>\n",
|
||
" <th>C202510</th>\n",
|
||
" <th>C202511</th>\n",
|
||
" <th>C202512</th>\n",
|
||
" <th>C202513</th>\n",
|
||
" <th>C202514</th>\n",
|
||
" <th>C202515</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>12522</td>\n",
|
||
" <td>1080</td>\n",
|
||
" <td>INTENSE GLOS LAB BUBBAL TUT/FRUT 5ml</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>10.0</td>\n",
|
||
" <td>2.0</td>\n",
|
||
" <td>2.0</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>2.0</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>7.0</td>\n",
|
||
" <td>17.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>12522</td>\n",
|
||
" <td>1296</td>\n",
|
||
" <td>PMPCK THE BLEND DES ANTIT AER 2x75g</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>2.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>2.0</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>12522</td>\n",
|
||
" <td>1302</td>\n",
|
||
" <td>PMPCK LILY DES ANTIT AER 2x75g</td>\n",
|
||
" <td>5.0</td>\n",
|
||
" <td>6.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>4.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>4.0</td>\n",
|
||
" <td>4.0</td>\n",
|
||
" <td>2.0</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>6.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>12522</td>\n",
|
||
" <td>1314</td>\n",
|
||
" <td>PMPCK ZAAD DES ANTIT AER 2x75g</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>12522</td>\n",
|
||
" <td>1317</td>\n",
|
||
" <td>PMPCK MALBEC DES ANTIT AER 2x75g</td>\n",
|
||
" <td>2.0</td>\n",
|
||
" <td>5.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>2.0</td>\n",
|
||
" <td>2.0</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>2.0</td>\n",
|
||
" <td>5.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"<p>5 rows × 21 columns</p>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" PDV SKU_FINAL DESCRICAO C202415 C202416 \\\n",
|
||
"0 12522 1080 INTENSE GLOS LAB BUBBAL TUT/FRUT 5ml 0.0 10.0 \n",
|
||
"1 12522 1296 PMPCK THE BLEND DES ANTIT AER 2x75g 3.0 2.0 \n",
|
||
"2 12522 1302 PMPCK LILY DES ANTIT AER 2x75g 5.0 6.0 \n",
|
||
"3 12522 1314 PMPCK ZAAD DES ANTIT AER 2x75g 1.0 1.0 \n",
|
||
"4 12522 1317 PMPCK MALBEC DES ANTIT AER 2x75g 2.0 5.0 \n",
|
||
"\n",
|
||
" C202417 C202501 C202502 C202503 C202504 ... C202506 C202507 \\\n",
|
||
"0 2.0 2.0 1.0 2.0 3.0 ... 7.0 17.0 \n",
|
||
"1 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 \n",
|
||
"2 0.0 0.0 0.0 0.0 0.0 ... 3.0 4.0 \n",
|
||
"3 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 \n",
|
||
"4 0.0 1.0 3.0 0.0 0.0 ... 1.0 1.0 \n",
|
||
"\n",
|
||
" C202508 C202509 C202510 C202511 C202512 C202513 C202514 C202515 \n",
|
||
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
|
||
"1 0.0 0.0 0.0 0.0 0.0 2.0 1.0 0.0 \n",
|
||
"2 0.0 4.0 4.0 2.0 1.0 6.0 0.0 0.0 \n",
|
||
"3 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 \n",
|
||
"4 0.0 2.0 2.0 3.0 2.0 5.0 0.0 0.0 \n",
|
||
"\n",
|
||
"[5 rows x 21 columns]"
|
||
]
|
||
},
|
||
"execution_count": 26,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"\n",
|
||
"# 1. Agrupamento horizontalizando as vendas por ciclo. transformando coluna de cilos em cada ciclo por coluna.\n",
|
||
"df_agrupado = dfi.groupby(['PDV', 'SKU_FINAL', 'DESCRICAO', 'Ciclo'], as_index=False)['VENDAS_CICLO'].sum()\n",
|
||
"\n",
|
||
"# 2. Pivotar o DataFrame\n",
|
||
"df_pivotado = df_agrupado.pivot_table(\n",
|
||
" index=['PDV', 'SKU_FINAL', 'DESCRICAO'],\n",
|
||
" columns='Ciclo',\n",
|
||
" values='VENDAS_CICLO',\n",
|
||
" fill_value=0 # Substitui NaN por 0\n",
|
||
")\n",
|
||
"\n",
|
||
"# 3. Resetar o índice para deixar como DataFrame normal (opcional)\n",
|
||
"df_pivotadowawa = df_pivotado.reset_index()\n",
|
||
"\n",
|
||
"# 4. (Opcional) Renomear colunas com prefixo \"Ciclo_\"\n",
|
||
"df_pivotadowawa.columns.name = None\n",
|
||
"df_pivotadowawa = df_pivotadowawa.rename(columns=lambda x: f'Ciclo_{x}' if isinstance(x, (int, str)) and str(x).isdigit() else x)\n",
|
||
"\n",
|
||
"# Resultado final\n",
|
||
"df_pivotadowawa.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 27,
|
||
"id": "82cdeaed",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"2.2.3\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"print(pd.__version__)\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 28,
|
||
"id": "8289d835",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"C:\\Users\\joao.herculano\\AppData\\Local\\Temp\\ipykernel_28176\\3920982216.py:25: UserWarning: pandas only supports SQLAlchemy connectable (engine/connection) or database string URI or sqlite3 DBAPI2 connection. Other DBAPI2 objects are not tested. Please consider using SQLAlchemy.\n",
|
||
" df_draft_ = pd.read_sql(query_est_draft, conn)\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"conn = pyodbc.connect(\n",
|
||
" f\"DRIVER={{SQL Server}};\"\n",
|
||
" f\"SERVER={config['banco']['host']},1433;\"\n",
|
||
" f\"DATABASE=GINSENG;\"\n",
|
||
" f\"UID={config['banco']['user']};\"\n",
|
||
" f\"PWD={config['banco']['password']}\"\n",
|
||
")\n",
|
||
"\n",
|
||
"query_est_draft = f'''\n",
|
||
"select em.PDV ,\n",
|
||
"COALESCE(cast(em.SKU_PARA as int) , cast(em.SKU as int)) as SKU,\n",
|
||
"em.DESCRICAO,\n",
|
||
"d.salescurve as curva,\n",
|
||
"d.codcategory as categoria,\n",
|
||
"d.nextcycleprojection as proj_mar\n",
|
||
",d.secondtonextcycleprojection as 'proj_mar+1',\n",
|
||
"em.[ESTOQUE ATUAL],em.[ESTOQUE EM TRANSITO],\n",
|
||
"em.[PEDIDO PENDENTE],\n",
|
||
"em.[DDV PREVISTO] ,\n",
|
||
"d.pricesellin as 'preço'\n",
|
||
"from estoque_mar em \n",
|
||
"left join draft d on d.code = COALESCE(cast(em.SKU_PARA as int) , cast(em.SKU as int)) and d.loja_id = em.PDV \n",
|
||
"where em.ORIGEM = 'BOT'\n",
|
||
"'''\n",
|
||
"df_draft_ = pd.read_sql(query_est_draft, conn)\n",
|
||
"conn.close()\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 29,
|
||
"id": "dd49288f",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_draft = df_draft_"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 30,
|
||
"id": "b110a12f",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>PDV</th>\n",
|
||
" <th>SKU</th>\n",
|
||
" <th>DESCRICAO</th>\n",
|
||
" <th>curva</th>\n",
|
||
" <th>categoria</th>\n",
|
||
" <th>proj_mar</th>\n",
|
||
" <th>proj_mar+1</th>\n",
|
||
" <th>ESTOQUE ATUAL</th>\n",
|
||
" <th>ESTOQUE EM TRANSITO</th>\n",
|
||
" <th>PEDIDO PENDENTE</th>\n",
|
||
" <th>DDV PREVISTO</th>\n",
|
||
" <th>preço</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>20998</td>\n",
|
||
" <td>57438</td>\n",
|
||
" <td>MAKE B BAT GLOSS C/AC POLIGL CORAL 3,6g</td>\n",
|
||
" <td>E</td>\n",
|
||
" <td>MAQUIAGEM</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0,04</td>\n",
|
||
" <td>18.29</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>20998</td>\n",
|
||
" <td>81628</td>\n",
|
||
" <td>MAKE B BAT GLOSS C/AC POLIGL NUDE 3,6g</td>\n",
|
||
" <td>C</td>\n",
|
||
" <td>MAQUIAGEM</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0,02</td>\n",
|
||
" <td>18.29</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>20998</td>\n",
|
||
" <td>81621</td>\n",
|
||
" <td>MAKE B BAT MATE C/AC POLIG ORANGE FEV 4g</td>\n",
|
||
" <td>C</td>\n",
|
||
" <td>MAQUIAGEM</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>10.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>16.66</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>20998</td>\n",
|
||
" <td>55984</td>\n",
|
||
" <td>MAKE B BAT ST/PREN HYAL CAND TOF V3 3,4g</td>\n",
|
||
" <td>C</td>\n",
|
||
" <td>MAQUIAGEM</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>9.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0,02</td>\n",
|
||
" <td>21.67</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>20998</td>\n",
|
||
" <td>58566</td>\n",
|
||
" <td>MAKE B CORRET LIQ FAC EFFECT 10 5,7ml</td>\n",
|
||
" <td>C</td>\n",
|
||
" <td>MAQUIAGEM</td>\n",
|
||
" <td>2.0</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>None</td>\n",
|
||
" <td>15.30</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" PDV SKU DESCRICAO curva categoria \\\n",
|
||
"0 20998 57438 MAKE B BAT GLOSS C/AC POLIGL CORAL 3,6g E MAQUIAGEM \n",
|
||
"1 20998 81628 MAKE B BAT GLOSS C/AC POLIGL NUDE 3,6g C MAQUIAGEM \n",
|
||
"2 20998 81621 MAKE B BAT MATE C/AC POLIG ORANGE FEV 4g C MAQUIAGEM \n",
|
||
"3 20998 55984 MAKE B BAT ST/PREN HYAL CAND TOF V3 3,4g C MAQUIAGEM \n",
|
||
"4 20998 58566 MAKE B CORRET LIQ FAC EFFECT 10 5,7ml C MAQUIAGEM \n",
|
||
"\n",
|
||
" proj_mar proj_mar+1 ESTOQUE ATUAL ESTOQUE EM TRANSITO PEDIDO PENDENTE \\\n",
|
||
"0 1.0 3.0 0.0 0.0 0.0 \n",
|
||
"1 1.0 0.0 1.0 0.0 0.0 \n",
|
||
"2 0.0 0.0 10.0 0.0 0.0 \n",
|
||
"3 1.0 0.0 9.0 0.0 0.0 \n",
|
||
"4 2.0 1.0 0.0 1.0 1.0 \n",
|
||
"\n",
|
||
" DDV PREVISTO preço \n",
|
||
"0 0,04 18.29 \n",
|
||
"1 0,02 18.29 \n",
|
||
"2 0 16.66 \n",
|
||
"3 0,02 21.67 \n",
|
||
"4 None 15.30 "
|
||
]
|
||
},
|
||
"execution_count": 30,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_draft.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 31,
|
||
"id": "67dd3c27",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"C:\\Users\\joao.herculano\\AppData\\Local\\Temp\\ipykernel_28176\\2417376295.py:4: SettingWithCopyWarning: \n",
|
||
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
"\n",
|
||
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
||
" df_draft['ESTOQUE ATUAL'] = df_draft['ESTOQUE ATUAL'].astype(float)\n",
|
||
"C:\\Users\\joao.herculano\\AppData\\Local\\Temp\\ipykernel_28176\\2417376295.py:6: SettingWithCopyWarning: \n",
|
||
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
"\n",
|
||
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
||
" df_draft['ESTOQUE EM TRANSITO'] = df_draft['ESTOQUE EM TRANSITO'].astype(float)\n",
|
||
"C:\\Users\\joao.herculano\\AppData\\Local\\Temp\\ipykernel_28176\\2417376295.py:8: SettingWithCopyWarning: \n",
|
||
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
"\n",
|
||
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
||
" df_draft['PEDIDO PENDENTE'] = df_draft['PEDIDO PENDENTE'].astype(float)\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"(278761, 12)"
|
||
]
|
||
},
|
||
"execution_count": 31,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# REMOVENDO OUI DOS PRODUTOS BOTI\n",
|
||
"df_draft = df_draft[~df_draft['DESCRICAO'].str.contains('OUI', na=False)]\n",
|
||
"\n",
|
||
"df_draft['ESTOQUE ATUAL'] = df_draft['ESTOQUE ATUAL'].astype(float)\n",
|
||
"\n",
|
||
"df_draft['ESTOQUE EM TRANSITO'] = df_draft['ESTOQUE EM TRANSITO'].astype(float)\n",
|
||
"\n",
|
||
"df_draft['PEDIDO PENDENTE'] = df_draft['PEDIDO PENDENTE'].astype(float)\n",
|
||
"\n",
|
||
"df_draft.shape"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 32,
|
||
"id": "355778d6",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"C:\\Users\\joao.herculano\\AppData\\Local\\Temp\\ipykernel_28176\\1952797845.py:1: SettingWithCopyWarning: \n",
|
||
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
"\n",
|
||
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
||
" df_draft['DDV PREVISTO'] = df_draft['DDV PREVISTO'].str.replace(',','.')\n",
|
||
"C:\\Users\\joao.herculano\\AppData\\Local\\Temp\\ipykernel_28176\\1952797845.py:3: SettingWithCopyWarning: \n",
|
||
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
"\n",
|
||
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
||
" df_draft['DDV PREVISTO'] = df_draft['DDV PREVISTO'].astype(float)\n",
|
||
"C:\\Users\\joao.herculano\\AppData\\Local\\Temp\\ipykernel_28176\\1952797845.py:5: SettingWithCopyWarning: \n",
|
||
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
"\n",
|
||
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
||
" df_draft['DDV PREVISTO'] = df_draft['DDV PREVISTO'].fillna(0)\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"df_draft['DDV PREVISTO'] = df_draft['DDV PREVISTO'].str.replace(',','.')\n",
|
||
"\n",
|
||
"df_draft['DDV PREVISTO'] = df_draft['DDV PREVISTO'].astype(float)\n",
|
||
"\n",
|
||
"df_draft['DDV PREVISTO'] = df_draft['DDV PREVISTO'].fillna(0)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 33,
|
||
"id": "d891c575",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"#agrupamento pra evitar duplicidade\n",
|
||
"df_draft = df_draft.groupby(['PDV','SKU','curva','categoria'])[['proj_mar','proj_mar+1','ESTOQUE ATUAL','ESTOQUE EM TRANSITO','PEDIDO PENDENTE','DDV PREVISTO','preço']].max().reset_index()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 34,
|
||
"id": "3d13ef4c",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_draft['SKU'] = df_draft['SKU'].astype('Int64')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 35,
|
||
"id": "5ca66c75",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_draft = pd.merge(df_draft,df_pivotadowawa,left_on=['PDV','SKU'],right_on=['PDV','SKU_FINAL'],how='inner')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 36,
|
||
"id": "91298cde",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Index(['C202415', 'C202416', 'C202417', 'C202501', 'C202502', 'C202503',\n",
|
||
" 'C202504', 'C202505', 'C202506', 'C202507', 'C202508', 'C202509',\n",
|
||
" 'C202510', 'C202511', 'C202512', 'C202513', 'C202514', 'C202515'],\n",
|
||
" dtype='object')"
|
||
]
|
||
},
|
||
"execution_count": 36,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# OLHO COLUNAS DE VENDA\n",
|
||
"df_draft.columns[13:31]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 37,
|
||
"id": "34e179cb",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"C:\\Users\\joao.herculano\\AppData\\Local\\Temp\\ipykernel_28176\\1731143361.py:24: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
|
||
" crescimento_por_pdv = df_draft.groupby('PDV').apply(calcular_crescimento)\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Define as colunas mensais\n",
|
||
"colunas_mensais = df_draft.columns[13:31]\n",
|
||
"\n",
|
||
"# Agrupa por PDV e calcula crescimento médio por PDV\n",
|
||
"def calcular_crescimento(grupo):\n",
|
||
" soma_mensal = grupo[colunas_mensais].sum() # soma por mês\n",
|
||
" variacao_mensal = soma_mensal.pct_change().dropna() # variação percentual mês a mês\n",
|
||
" variacao_mensal = variacao_mensal[np.isfinite(variacao_mensal)]\n",
|
||
"\n",
|
||
" if len(variacao_mensal) == 0:\n",
|
||
" return pd.Series({'CRESCIMENTO': np.nan})\n",
|
||
"\n",
|
||
" media = variacao_mensal.mean()\n",
|
||
" desvio = variacao_mensal.std()\n",
|
||
"\n",
|
||
" limite_sup = media + 2 * desvio\n",
|
||
" limite_inf = media - 2 * desvio\n",
|
||
"\n",
|
||
" variacoes_filtradas = variacao_mensal[variacao_mensal.between(limite_inf, limite_sup)]\n",
|
||
" crescimento = round(variacoes_filtradas.mean(), 4)\n",
|
||
" return pd.Series({'CRESCIMENTO': crescimento})\n",
|
||
"\n",
|
||
"# Aplica a função por PDV\n",
|
||
"crescimento_por_pdv = df_draft.groupby('PDV').apply(calcular_crescimento)\n",
|
||
"\n",
|
||
"# Merge do resultado de volta no dataframe original\n",
|
||
"df_draft = df_draft.merge(crescimento_por_pdv, on='PDV', how='left')\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 38,
|
||
"id": "94aa432f",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"0 58363\n",
|
||
"1 58363\n",
|
||
"2 58363\n",
|
||
"3 58363\n",
|
||
"4 58363\n",
|
||
"Name: PRODUTO SIMILAR, dtype: Int64"
|
||
]
|
||
},
|
||
"execution_count": 38,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_similares['PRODUTO SIMILAR'] = df_similares['PRODUTO SIMILAR'].astype('Int64')\n",
|
||
"df_similares['PRODUTO SIMILAR'].head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 39,
|
||
"id": "38b0eb5d",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"PDV object\n",
|
||
"SKU Int64\n",
|
||
"dtype: object"
|
||
]
|
||
},
|
||
"execution_count": 39,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_draft[['PDV', 'SKU']].dtypes"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 40,
|
||
"id": "4bc8c2b4",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_draft['PDV'] = df_draft['PDV'].astype('Int64')\n",
|
||
"\n",
|
||
"df_final = pd.merge(left=df_similares,right=df_draft,right_on=['PDV', 'SKU'],left_on=['PDV','PRODUTO SIMILAR'],how='left')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 41,
|
||
"id": "2c9f011d",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"PRODUTO SIMILAR\n",
|
||
"58363 76\n",
|
||
"Name: count, dtype: Int64"
|
||
]
|
||
},
|
||
"execution_count": 41,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_similares= df_similares[df_similares['PRODUTO SIMILAR'].notna()]\n",
|
||
"\n",
|
||
"df_similares['PRODUTO SIMILAR'].value_counts()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 42,
|
||
"id": "0ff66803",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"SKU\n",
|
||
"58363 75\n",
|
||
"Name: count, dtype: Int64"
|
||
]
|
||
},
|
||
"execution_count": 42,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final['SKU'].value_counts()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 43,
|
||
"id": "64bde00b",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_venda_diaria = pd.read_csv(\n",
|
||
" r\"../../SUPRIMENTOS/BD_LANÇAMENTOS/BOT/arquivos usados por todos os lançamentos/vendas 20250815.csv\",\n",
|
||
" sep=';',\n",
|
||
" dtype={'SKU_2': str},decimal=',')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 44,
|
||
"id": "6ab155b5",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_venda_diaria['VENDAS_CICLO'] = df_venda_diaria['VENDAS_CICLO'].str.replace(r'\\.', '', regex=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 45,
|
||
"id": "1d25e5df",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>PDV</th>\n",
|
||
" <th>SKU</th>\n",
|
||
" <th>DESCRICAO</th>\n",
|
||
" <th>VENDAS_CICLO</th>\n",
|
||
" <th>Ciclo</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>12522</td>\n",
|
||
" <td>51.944</td>\n",
|
||
" <td>COFFEE DES COL MAN SEDUC TCH PRM 10ml</td>\n",
|
||
" <td>11</td>\n",
|
||
" <td>C202307</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>20998</td>\n",
|
||
" <td>77.557</td>\n",
|
||
" <td>QDB BASE LIQ SUPERMAT COR 06 Q 30ml RPCK</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>C202405</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>20858</td>\n",
|
||
" <td>74.103</td>\n",
|
||
" <td>GLAMOUR DES COL SEC BL 75ml V4</td>\n",
|
||
" <td>5</td>\n",
|
||
" <td>C202409</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>5699</td>\n",
|
||
" <td>47.950</td>\n",
|
||
" <td>ZAAD EDP 95ml V6</td>\n",
|
||
" <td>12</td>\n",
|
||
" <td>C202406</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>20993</td>\n",
|
||
" <td>50.297</td>\n",
|
||
" <td>ESTJ DEM LILY ESSENCE 4x4ml</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>C202416</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" PDV SKU DESCRICAO VENDAS_CICLO \\\n",
|
||
"0 12522 51.944 COFFEE DES COL MAN SEDUC TCH PRM 10ml 11 \n",
|
||
"1 20998 77.557 QDB BASE LIQ SUPERMAT COR 06 Q 30ml RPCK 1 \n",
|
||
"2 20858 74.103 GLAMOUR DES COL SEC BL 75ml V4 5 \n",
|
||
"3 5699 47.950 ZAAD EDP 95ml V6 12 \n",
|
||
"4 20993 50.297 ESTJ DEM LILY ESSENCE 4x4ml 2 \n",
|
||
"\n",
|
||
" Ciclo \n",
|
||
"0 C202307 \n",
|
||
"1 C202405 \n",
|
||
"2 C202409 \n",
|
||
"3 C202406 \n",
|
||
"4 C202416 "
|
||
]
|
||
},
|
||
"execution_count": 45,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_venda_diaria.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 46,
|
||
"id": "5d0d79f2",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>PDV</th>\n",
|
||
" <th>SKU</th>\n",
|
||
" <th>DESCRICAO</th>\n",
|
||
" <th>Vendas_Total</th>\n",
|
||
" <th>Ciclo</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>12522</td>\n",
|
||
" <td>51.944</td>\n",
|
||
" <td>COFFEE DES COL MAN SEDUC TCH PRM 10ml</td>\n",
|
||
" <td>11</td>\n",
|
||
" <td>C202307</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>20998</td>\n",
|
||
" <td>77.557</td>\n",
|
||
" <td>QDB BASE LIQ SUPERMAT COR 06 Q 30ml RPCK</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>C202405</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>20858</td>\n",
|
||
" <td>74.103</td>\n",
|
||
" <td>GLAMOUR DES COL SEC BL 75ml V4</td>\n",
|
||
" <td>5</td>\n",
|
||
" <td>C202409</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>5699</td>\n",
|
||
" <td>47.950</td>\n",
|
||
" <td>ZAAD EDP 95ml V6</td>\n",
|
||
" <td>12</td>\n",
|
||
" <td>C202406</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>20993</td>\n",
|
||
" <td>50.297</td>\n",
|
||
" <td>ESTJ DEM LILY ESSENCE 4x4ml</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>C202416</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" PDV SKU DESCRICAO Vendas_Total \\\n",
|
||
"0 12522 51.944 COFFEE DES COL MAN SEDUC TCH PRM 10ml 11 \n",
|
||
"1 20998 77.557 QDB BASE LIQ SUPERMAT COR 06 Q 30ml RPCK 1 \n",
|
||
"2 20858 74.103 GLAMOUR DES COL SEC BL 75ml V4 5 \n",
|
||
"3 5699 47.950 ZAAD EDP 95ml V6 12 \n",
|
||
"4 20993 50.297 ESTJ DEM LILY ESSENCE 4x4ml 2 \n",
|
||
"\n",
|
||
" Ciclo \n",
|
||
"0 C202307 \n",
|
||
"1 C202405 \n",
|
||
"2 C202409 \n",
|
||
"3 C202406 \n",
|
||
"4 C202416 "
|
||
]
|
||
},
|
||
"execution_count": 46,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"#df_venda_diaria['Ciclo'] = df_venda_diaria['Ciclo'].str.replace(\"C\",\"C20\") \n",
|
||
"\n",
|
||
"df_venda_diaria = df_venda_diaria.rename(columns={'VENDAS_CICLO':'Vendas_Total'})\n",
|
||
"\n",
|
||
"df_venda_diaria.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 47,
|
||
"id": "a93427da",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>PDV</th>\n",
|
||
" <th>SKU</th>\n",
|
||
" <th>DESCRICAO</th>\n",
|
||
" <th>Vendas_Total</th>\n",
|
||
" <th>Ciclo</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>12522</td>\n",
|
||
" <td>51.944</td>\n",
|
||
" <td>COFFEE DES COL MAN SEDUC TCH PRM 10ml</td>\n",
|
||
" <td>11</td>\n",
|
||
" <td>C202307</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>20998</td>\n",
|
||
" <td>77.557</td>\n",
|
||
" <td>QDB BASE LIQ SUPERMAT COR 06 Q 30ml RPCK</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>C202405</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>20858</td>\n",
|
||
" <td>74.103</td>\n",
|
||
" <td>GLAMOUR DES COL SEC BL 75ml V4</td>\n",
|
||
" <td>5</td>\n",
|
||
" <td>C202409</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>5699</td>\n",
|
||
" <td>47.950</td>\n",
|
||
" <td>ZAAD EDP 95ml V6</td>\n",
|
||
" <td>12</td>\n",
|
||
" <td>C202406</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>20993</td>\n",
|
||
" <td>50.297</td>\n",
|
||
" <td>ESTJ DEM LILY ESSENCE 4x4ml</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>C202416</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" PDV SKU DESCRICAO Vendas_Total \\\n",
|
||
"0 12522 51.944 COFFEE DES COL MAN SEDUC TCH PRM 10ml 11 \n",
|
||
"1 20998 77.557 QDB BASE LIQ SUPERMAT COR 06 Q 30ml RPCK 1 \n",
|
||
"2 20858 74.103 GLAMOUR DES COL SEC BL 75ml V4 5 \n",
|
||
"3 5699 47.950 ZAAD EDP 95ml V6 12 \n",
|
||
"4 20993 50.297 ESTJ DEM LILY ESSENCE 4x4ml 2 \n",
|
||
"\n",
|
||
" Ciclo \n",
|
||
"0 C202307 \n",
|
||
"1 C202405 \n",
|
||
"2 C202409 \n",
|
||
"3 C202406 \n",
|
||
"4 C202416 "
|
||
]
|
||
},
|
||
"execution_count": 47,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_venda_diaria['Vendas_Total'] = df_venda_diaria['Vendas_Total'].str.replace(',', '.', regex=False)\n",
|
||
"\n",
|
||
"df_venda_diaria['Vendas_Total'] = df_venda_diaria['Vendas_Total'].astype('float')\n",
|
||
"\n",
|
||
"df_venda_diaria['Vendas_Total'] = round(df_venda_diaria['Vendas_Total'],0)\n",
|
||
"\n",
|
||
"df_venda_diaria['Vendas_Total'] = df_venda_diaria['Vendas_Total'].astype(str)\n",
|
||
"\n",
|
||
"df_venda_diaria['Vendas_Total'] = (\n",
|
||
" df_venda_diaria['Vendas_Total']\n",
|
||
" .str.replace('.0', '', regex=False)\n",
|
||
" .str.replace('.', '', regex=False)\n",
|
||
" .astype('Int64')\n",
|
||
")\n",
|
||
"\n",
|
||
"\n",
|
||
"df_venda_diaria.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 48,
|
||
"id": "7d973983",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>PDV</th>\n",
|
||
" <th>SKU</th>\n",
|
||
" <th>DESCRICAO</th>\n",
|
||
" <th>Vendas_Total</th>\n",
|
||
" <th>Ciclo</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
"Empty DataFrame\n",
|
||
"Columns: [PDV, SKU, DESCRICAO, Vendas_Total, Ciclo]\n",
|
||
"Index: []"
|
||
]
|
||
},
|
||
"execution_count": 48,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_venda_diaria[(df_venda_diaria['PDV']==14668) & (df_venda_diaria['SKU']=='85096')]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 49,
|
||
"id": "6ddec856",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>PDV</th>\n",
|
||
" <th>SKU</th>\n",
|
||
" <th>DESCRICAO</th>\n",
|
||
" <th>Vendas_Total</th>\n",
|
||
" <th>Ciclo</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>12522</td>\n",
|
||
" <td>51.944</td>\n",
|
||
" <td>COFFEE DES COL MAN SEDUC TCH PRM 10ml</td>\n",
|
||
" <td>11</td>\n",
|
||
" <td>C202307</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>20998</td>\n",
|
||
" <td>77.557</td>\n",
|
||
" <td>QDB BASE LIQ SUPERMAT COR 06 Q 30ml RPCK</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>C202405</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>20858</td>\n",
|
||
" <td>74.103</td>\n",
|
||
" <td>GLAMOUR DES COL SEC BL 75ml V4</td>\n",
|
||
" <td>5</td>\n",
|
||
" <td>C202409</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>5699</td>\n",
|
||
" <td>47.950</td>\n",
|
||
" <td>ZAAD EDP 95ml V6</td>\n",
|
||
" <td>12</td>\n",
|
||
" <td>C202406</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>20993</td>\n",
|
||
" <td>50.297</td>\n",
|
||
" <td>ESTJ DEM LILY ESSENCE 4x4ml</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>C202416</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" PDV SKU DESCRICAO Vendas_Total \\\n",
|
||
"0 12522 51.944 COFFEE DES COL MAN SEDUC TCH PRM 10ml 11 \n",
|
||
"1 20998 77.557 QDB BASE LIQ SUPERMAT COR 06 Q 30ml RPCK 1 \n",
|
||
"2 20858 74.103 GLAMOUR DES COL SEC BL 75ml V4 5 \n",
|
||
"3 5699 47.950 ZAAD EDP 95ml V6 12 \n",
|
||
"4 20993 50.297 ESTJ DEM LILY ESSENCE 4x4ml 2 \n",
|
||
"\n",
|
||
" Ciclo \n",
|
||
"0 C202307 \n",
|
||
"1 C202405 \n",
|
||
"2 C202409 \n",
|
||
"3 C202406 \n",
|
||
"4 C202416 "
|
||
]
|
||
},
|
||
"execution_count": 49,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_venda_diaria2 = df_venda_diaria.pivot_table(\n",
|
||
" index=[\"PDV\", \"SKU\", \"DESCRICAO\"],\n",
|
||
" columns=\"Ciclo\",\n",
|
||
" values=\"Vendas_Total\",\n",
|
||
" fill_value=0\n",
|
||
").reset_index()\n",
|
||
"\n",
|
||
"# Se quiser, reorganize as colunas colocando os ciclos ao final\n",
|
||
"df_venda_diaria.columns.name = None\n",
|
||
"\n",
|
||
"df_venda_diaria.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 50,
|
||
"id": "882e68aa",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Index(['PDV', 'SKU', 'DESCRICAO', 'Vendas_Total', 'Ciclo'], dtype='object')"
|
||
]
|
||
},
|
||
"execution_count": 50,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_venda_diaria.columns"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 51,
|
||
"id": "0c288d75",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>PDV</th>\n",
|
||
" <th>SKU</th>\n",
|
||
" <th>DESCRICAO</th>\n",
|
||
" <th>Vendas_Total</th>\n",
|
||
" <th>Ciclo</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>12522</td>\n",
|
||
" <td>51.944</td>\n",
|
||
" <td>COFFEE DES COL MAN SEDUC TCH PRM 10ml</td>\n",
|
||
" <td>11</td>\n",
|
||
" <td>C202307</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>20998</td>\n",
|
||
" <td>77.557</td>\n",
|
||
" <td>QDB BASE LIQ SUPERMAT COR 06 Q 30ml RPCK</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>C202405</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>20858</td>\n",
|
||
" <td>74.103</td>\n",
|
||
" <td>GLAMOUR DES COL SEC BL 75ml V4</td>\n",
|
||
" <td>5</td>\n",
|
||
" <td>C202409</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>5699</td>\n",
|
||
" <td>47.950</td>\n",
|
||
" <td>ZAAD EDP 95ml V6</td>\n",
|
||
" <td>12</td>\n",
|
||
" <td>C202406</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>20993</td>\n",
|
||
" <td>50.297</td>\n",
|
||
" <td>ESTJ DEM LILY ESSENCE 4x4ml</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>C202416</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>...</th>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1663315</th>\n",
|
||
" <td>20996</td>\n",
|
||
" <td>83.039</td>\n",
|
||
" <td>QUASAR DES COL RUSH 100ml</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>C202415</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1663316</th>\n",
|
||
" <td>20970</td>\n",
|
||
" <td>52.025</td>\n",
|
||
" <td>BOTI BABY SAB LIQ GLIC V2 400ml</td>\n",
|
||
" <td>6</td>\n",
|
||
" <td>C202511</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1663317</th>\n",
|
||
" <td>20996</td>\n",
|
||
" <td>93.069</td>\n",
|
||
" <td>LA PIEL D/COL SPR CP PER AMBR DOUR 200ml</td>\n",
|
||
" <td>10</td>\n",
|
||
" <td>C202414</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1663318</th>\n",
|
||
" <td>13427</td>\n",
|
||
" <td>51.279</td>\n",
|
||
" <td>MAKE B BAS LIQ C/ GLYC TX 140 30g</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>C202309</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1663319</th>\n",
|
||
" <td>21278</td>\n",
|
||
" <td>52.014</td>\n",
|
||
" <td>CJ FLAC OUI EDP ICONIQUE INTENSE 3x1ml</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>C202511</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"<p>1663320 rows × 5 columns</p>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" PDV SKU DESCRICAO \\\n",
|
||
"0 12522 51.944 COFFEE DES COL MAN SEDUC TCH PRM 10ml \n",
|
||
"1 20998 77.557 QDB BASE LIQ SUPERMAT COR 06 Q 30ml RPCK \n",
|
||
"2 20858 74.103 GLAMOUR DES COL SEC BL 75ml V4 \n",
|
||
"3 5699 47.950 ZAAD EDP 95ml V6 \n",
|
||
"4 20993 50.297 ESTJ DEM LILY ESSENCE 4x4ml \n",
|
||
"... ... ... ... \n",
|
||
"1663315 20996 83.039 QUASAR DES COL RUSH 100ml \n",
|
||
"1663316 20970 52.025 BOTI BABY SAB LIQ GLIC V2 400ml \n",
|
||
"1663317 20996 93.069 LA PIEL D/COL SPR CP PER AMBR DOUR 200ml \n",
|
||
"1663318 13427 51.279 MAKE B BAS LIQ C/ GLYC TX 140 30g \n",
|
||
"1663319 21278 52.014 CJ FLAC OUI EDP ICONIQUE INTENSE 3x1ml \n",
|
||
"\n",
|
||
" Vendas_Total Ciclo \n",
|
||
"0 11 C202307 \n",
|
||
"1 1 C202405 \n",
|
||
"2 5 C202409 \n",
|
||
"3 12 C202406 \n",
|
||
"4 2 C202416 \n",
|
||
"... ... ... \n",
|
||
"1663315 1 C202415 \n",
|
||
"1663316 6 C202511 \n",
|
||
"1663317 10 C202414 \n",
|
||
"1663318 1 C202309 \n",
|
||
"1663319 2 C202511 \n",
|
||
"\n",
|
||
"[1663320 rows x 5 columns]"
|
||
]
|
||
},
|
||
"execution_count": 51,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_venda_diaria"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 52,
|
||
"id": "bdf6abbb",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"CICLO SIMILAR object\n",
|
||
"PRODUTO SIMILAR Int64\n",
|
||
"PDV int64\n",
|
||
"dtype: object"
|
||
]
|
||
},
|
||
"execution_count": 52,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final[['CICLO SIMILAR','PRODUTO SIMILAR','PDV']].dtypes"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 53,
|
||
"id": "dc452c72",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"(76, 61)"
|
||
]
|
||
},
|
||
"execution_count": 53,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final = pd.merge(left=df_final, right=filtered_calendario[['Ciclo','INICIO CICLO','FIM CICLO','DURAÇÃO','match','dias_ate_inicio']], right_on='match',left_on='MATCH',how='left')\n",
|
||
"df_final.shape"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 54,
|
||
"id": "c9de258b",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>PRODUTO LANÇAMENTO</th>\n",
|
||
" <th>DESCRIÇÃO DO LANÇAMENTO</th>\n",
|
||
" <th>PRODUTO SIMILAR</th>\n",
|
||
" <th>DESCRIÇÃO SIMILAR</th>\n",
|
||
" <th>CICLO SIMILAR</th>\n",
|
||
" <th>FOCO</th>\n",
|
||
" <th>IAF</th>\n",
|
||
" <th>CATEGORIA</th>\n",
|
||
" <th>MARCA</th>\n",
|
||
" <th>% CONSUMIDOR</th>\n",
|
||
" <th>...</th>\n",
|
||
" <th>C202513</th>\n",
|
||
" <th>C202514</th>\n",
|
||
" <th>C202515</th>\n",
|
||
" <th>CRESCIMENTO</th>\n",
|
||
" <th>Ciclo</th>\n",
|
||
" <th>INICIO CICLO</th>\n",
|
||
" <th>FIM CICLO</th>\n",
|
||
" <th>DURAÇÃO</th>\n",
|
||
" <th>match</th>\n",
|
||
" <th>dias_ate_inicio</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ...</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>Body Splash Desodrante Colônia Cuide-se Bem Nu...</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>PERFUMARIA</td>\n",
|
||
" <td>CUIDE-SE BEM</td>\n",
|
||
" <td>-</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>4.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>-0.1178</td>\n",
|
||
" <td>C202517</td>\n",
|
||
" <td>2025-12-01</td>\n",
|
||
" <td>2025-12-25</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>45</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ...</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>Body Splash Desodrante Colônia Cuide-se Bem Nu...</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>PERFUMARIA</td>\n",
|
||
" <td>CUIDE-SE BEM</td>\n",
|
||
" <td>-</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>12.0</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>-0.1177</td>\n",
|
||
" <td>C202517</td>\n",
|
||
" <td>2025-12-01</td>\n",
|
||
" <td>2025-12-25</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>45</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ...</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>Body Splash Desodrante Colônia Cuide-se Bem Nu...</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>PERFUMARIA</td>\n",
|
||
" <td>CUIDE-SE BEM</td>\n",
|
||
" <td>-</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>-0.0883</td>\n",
|
||
" <td>C202517</td>\n",
|
||
" <td>2025-12-01</td>\n",
|
||
" <td>2025-12-25</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>45</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ...</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>Body Splash Desodrante Colônia Cuide-se Bem Nu...</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>PERFUMARIA</td>\n",
|
||
" <td>CUIDE-SE BEM</td>\n",
|
||
" <td>-</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>2.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>-0.1160</td>\n",
|
||
" <td>C202517</td>\n",
|
||
" <td>2025-12-01</td>\n",
|
||
" <td>2025-12-25</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>45</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ...</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>Body Splash Desodrante Colônia Cuide-se Bem Nu...</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>PERFUMARIA</td>\n",
|
||
" <td>CUIDE-SE BEM</td>\n",
|
||
" <td>-</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>9.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>-0.1009</td>\n",
|
||
" <td>C202517</td>\n",
|
||
" <td>2025-12-01</td>\n",
|
||
" <td>2025-12-25</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>45</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"<p>5 rows × 61 columns</p>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" PRODUTO LANÇAMENTO DESCRIÇÃO DO LANÇAMENTO \\\n",
|
||
"0 86116 CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ... \n",
|
||
"1 86116 CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ... \n",
|
||
"2 86116 CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ... \n",
|
||
"3 86116 CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ... \n",
|
||
"4 86116 CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ... \n",
|
||
"\n",
|
||
" PRODUTO SIMILAR DESCRIÇÃO SIMILAR \\\n",
|
||
"0 58363 Body Splash Desodrante Colônia Cuide-se Bem Nu... \n",
|
||
"1 58363 Body Splash Desodrante Colônia Cuide-se Bem Nu... \n",
|
||
"2 58363 Body Splash Desodrante Colônia Cuide-se Bem Nu... \n",
|
||
"3 58363 Body Splash Desodrante Colônia Cuide-se Bem Nu... \n",
|
||
"4 58363 Body Splash Desodrante Colônia Cuide-se Bem Nu... \n",
|
||
"\n",
|
||
" CICLO SIMILAR FOCO IAF CATEGORIA MARCA % CONSUMIDOR ... C202513 \\\n",
|
||
"0 C202506 Não Não PERFUMARIA CUIDE-SE BEM - ... 4.0 \n",
|
||
"1 C202506 Não Não PERFUMARIA CUIDE-SE BEM - ... 12.0 \n",
|
||
"2 C202506 Não Não PERFUMARIA CUIDE-SE BEM - ... 3.0 \n",
|
||
"3 C202506 Não Não PERFUMARIA CUIDE-SE BEM - ... 2.0 \n",
|
||
"4 C202506 Não Não PERFUMARIA CUIDE-SE BEM - ... 9.0 \n",
|
||
"\n",
|
||
" C202514 C202515 CRESCIMENTO Ciclo INICIO CICLO FIM CICLO DURAÇÃO match \\\n",
|
||
"0 0.0 0.0 -0.1178 C202517 2025-12-01 2025-12-25 25 1 \n",
|
||
"1 3.0 0.0 -0.1177 C202517 2025-12-01 2025-12-25 25 1 \n",
|
||
"2 1.0 0.0 -0.0883 C202517 2025-12-01 2025-12-25 25 1 \n",
|
||
"3 0.0 0.0 -0.1160 C202517 2025-12-01 2025-12-25 25 1 \n",
|
||
"4 0.0 0.0 -0.1009 C202517 2025-12-01 2025-12-25 25 1 \n",
|
||
"\n",
|
||
" dias_ate_inicio \n",
|
||
"0 45 \n",
|
||
"1 45 \n",
|
||
"2 45 \n",
|
||
"3 45 \n",
|
||
"4 45 \n",
|
||
"\n",
|
||
"[5 rows x 61 columns]"
|
||
]
|
||
},
|
||
"execution_count": 54,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 55,
|
||
"id": "8a05450c",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_final = pd.merge(left=df_final, right=calendario[['Ciclo','INICIO CICLO','FIM CICLO','DURAÇÃO']], right_on='Ciclo',left_on='CICLO SIMILAR',how='left')\n",
|
||
"df_final.shape\n",
|
||
"\n",
|
||
"df_final = df_final.drop_duplicates()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 56,
|
||
"id": "cc65edab",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>PDV</th>\n",
|
||
" <th>SKU</th>\n",
|
||
" <th>DESCRICAO</th>\n",
|
||
" <th>Vendas Ciclo Lançamento</th>\n",
|
||
" <th>Ciclo</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>12522</td>\n",
|
||
" <td>51.944</td>\n",
|
||
" <td>COFFEE DES COL MAN SEDUC TCH PRM 10ml</td>\n",
|
||
" <td>11</td>\n",
|
||
" <td>C202307</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>20998</td>\n",
|
||
" <td>77.557</td>\n",
|
||
" <td>QDB BASE LIQ SUPERMAT COR 06 Q 30ml RPCK</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>C202405</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>20858</td>\n",
|
||
" <td>74.103</td>\n",
|
||
" <td>GLAMOUR DES COL SEC BL 75ml V4</td>\n",
|
||
" <td>5</td>\n",
|
||
" <td>C202409</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>5699</td>\n",
|
||
" <td>47.950</td>\n",
|
||
" <td>ZAAD EDP 95ml V6</td>\n",
|
||
" <td>12</td>\n",
|
||
" <td>C202406</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>20993</td>\n",
|
||
" <td>50.297</td>\n",
|
||
" <td>ESTJ DEM LILY ESSENCE 4x4ml</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>C202416</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" PDV SKU DESCRICAO \\\n",
|
||
"0 12522 51.944 COFFEE DES COL MAN SEDUC TCH PRM 10ml \n",
|
||
"1 20998 77.557 QDB BASE LIQ SUPERMAT COR 06 Q 30ml RPCK \n",
|
||
"2 20858 74.103 GLAMOUR DES COL SEC BL 75ml V4 \n",
|
||
"3 5699 47.950 ZAAD EDP 95ml V6 \n",
|
||
"4 20993 50.297 ESTJ DEM LILY ESSENCE 4x4ml \n",
|
||
"\n",
|
||
" Vendas Ciclo Lançamento Ciclo \n",
|
||
"0 11 C202307 \n",
|
||
"1 1 C202405 \n",
|
||
"2 5 C202409 \n",
|
||
"3 12 C202406 \n",
|
||
"4 2 C202416 "
|
||
]
|
||
},
|
||
"execution_count": 56,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"\n",
|
||
"df_venda_diaria = df_venda_diaria.rename(columns={'Vendas_Total':'Vendas Ciclo Lançamento'})\n",
|
||
"df_venda_diaria.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 57,
|
||
"id": "6367ac21",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"0 C202506\n",
|
||
"28 C202506\n",
|
||
"56 C202506\n",
|
||
"84 C202506\n",
|
||
"112 C202506\n",
|
||
" ... \n",
|
||
"1988 C202506\n",
|
||
"2016 C202506\n",
|
||
"2044 C202506\n",
|
||
"2072 C202506\n",
|
||
"2100 C202506\n",
|
||
"Name: CICLO SIMILAR, Length: 76, dtype: object"
|
||
]
|
||
},
|
||
"execution_count": 57,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final['CICLO SIMILAR'] = df_final['CICLO SIMILAR'].fillna('0')\n",
|
||
"df_final['CICLO SIMILAR'] "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 58,
|
||
"id": "b0af59cb",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>CICLO SIMILAR</th>\n",
|
||
" <th>PRODUTO SIMILAR</th>\n",
|
||
" <th>PDV</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>12522</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>28</th>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>12817</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>56</th>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>12818</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>84</th>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>12820</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>112</th>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>12823</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" CICLO SIMILAR PRODUTO SIMILAR PDV\n",
|
||
"0 C202506 58363 12522\n",
|
||
"28 C202506 58363 12817\n",
|
||
"56 C202506 58363 12818\n",
|
||
"84 C202506 58363 12820\n",
|
||
"112 C202506 58363 12823"
|
||
]
|
||
},
|
||
"execution_count": 58,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final[['CICLO SIMILAR','PRODUTO SIMILAR','PDV']].head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 59,
|
||
"id": "72925ca7",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"\n",
|
||
"\n",
|
||
"df_final['PRODUTO SIMILAR'] = df_final['PRODUTO SIMILAR'].astype('Int64')\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 60,
|
||
"id": "8b0bb174",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Index(['PRODUTO LANÇAMENTO', 'DESCRIÇÃO DO LANÇAMENTO', 'PRODUTO SIMILAR',\n",
|
||
" 'DESCRIÇÃO SIMILAR', 'CICLO SIMILAR', 'FOCO', 'IAF', 'CATEGORIA',\n",
|
||
" 'MARCA', '% CONSUMIDOR', 'MECANICA CONSUMIDOR', '% REVENDEDOR',\n",
|
||
" 'MECANICA REVENDEDOR', 'TIPO DE PRODUTO', 'MATCH', 'PDV', 'CANAL',\n",
|
||
" 'DESCRIÇÃO PDV', 'PDV DESC', 'UF', 'ANALISTA', 'SUPERVISOR', 'STATUS',\n",
|
||
" 'ANALISTA EUD', 'SKU', 'curva', 'categoria', 'proj_mar', 'proj_mar+1',\n",
|
||
" 'ESTOQUE ATUAL', 'ESTOQUE EM TRANSITO', 'PEDIDO PENDENTE',\n",
|
||
" 'DDV PREVISTO', 'preço', 'SKU_FINAL', 'DESCRICAO', 'C202415', 'C202416',\n",
|
||
" 'C202417', 'C202501', 'C202502', 'C202503', 'C202504', 'C202505',\n",
|
||
" 'C202506', 'C202507', 'C202508', 'C202509', 'C202510', 'C202511',\n",
|
||
" 'C202512', 'C202513', 'C202514', 'C202515', 'CRESCIMENTO', 'Ciclo_x',\n",
|
||
" 'INICIO CICLO_x', 'FIM CICLO_x', 'DURAÇÃO_x', 'match',\n",
|
||
" 'dias_ate_inicio', 'Ciclo_y', 'INICIO CICLO_y', 'FIM CICLO_y',\n",
|
||
" 'DURAÇÃO_y'],\n",
|
||
" dtype='object')"
|
||
]
|
||
},
|
||
"execution_count": 60,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final.columns"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 61,
|
||
"id": "1efff472",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>PDV</th>\n",
|
||
" <th>SKU</th>\n",
|
||
" <th>DESCRICAO</th>\n",
|
||
" <th>Vendas Ciclo Lançamento</th>\n",
|
||
" <th>Ciclo</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>12522</td>\n",
|
||
" <td>51944</td>\n",
|
||
" <td>COFFEE DES COL MAN SEDUC TCH PRM 10ml</td>\n",
|
||
" <td>11</td>\n",
|
||
" <td>C202307</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>20998</td>\n",
|
||
" <td>77557</td>\n",
|
||
" <td>QDB BASE LIQ SUPERMAT COR 06 Q 30ml RPCK</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>C202405</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>20858</td>\n",
|
||
" <td>74103</td>\n",
|
||
" <td>GLAMOUR DES COL SEC BL 75ml V4</td>\n",
|
||
" <td>5</td>\n",
|
||
" <td>C202409</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>5699</td>\n",
|
||
" <td>47950</td>\n",
|
||
" <td>ZAAD EDP 95ml V6</td>\n",
|
||
" <td>12</td>\n",
|
||
" <td>C202406</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>20993</td>\n",
|
||
" <td>50297</td>\n",
|
||
" <td>ESTJ DEM LILY ESSENCE 4x4ml</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>C202416</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" PDV SKU DESCRICAO \\\n",
|
||
"0 12522 51944 COFFEE DES COL MAN SEDUC TCH PRM 10ml \n",
|
||
"1 20998 77557 QDB BASE LIQ SUPERMAT COR 06 Q 30ml RPCK \n",
|
||
"2 20858 74103 GLAMOUR DES COL SEC BL 75ml V4 \n",
|
||
"3 5699 47950 ZAAD EDP 95ml V6 \n",
|
||
"4 20993 50297 ESTJ DEM LILY ESSENCE 4x4ml \n",
|
||
"\n",
|
||
" Vendas Ciclo Lançamento Ciclo \n",
|
||
"0 11 C202307 \n",
|
||
"1 1 C202405 \n",
|
||
"2 5 C202409 \n",
|
||
"3 12 C202406 \n",
|
||
"4 2 C202416 "
|
||
]
|
||
},
|
||
"execution_count": 61,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_venda_diaria['SKU'] = df_venda_diaria['SKU'].astype('str')\n",
|
||
"\n",
|
||
"df_venda_diaria['SKU'] = df_venda_diaria['SKU'].str.replace('.','')\n",
|
||
"\n",
|
||
"df_venda_diaria.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 62,
|
||
"id": "62ea79f7",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_final['PRODUTO SIMILAR'] = df_final['PRODUTO SIMILAR'].astype('str')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 63,
|
||
"id": "c5cd5f42",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_final = pd.merge(left=df_final, right = df_venda_diaria[['PDV','SKU','Ciclo','Vendas Ciclo Lançamento']], right_on=['Ciclo','SKU','PDV'],left_on=['CICLO SIMILAR','PRODUTO SIMILAR','PDV'],how='left')\n",
|
||
"\n",
|
||
"df_final = df_final.drop_duplicates()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 64,
|
||
"id": "bde12ed6",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_final = df_final[df_final['PRODUTO LANÇAMENTO'].notna()]\n",
|
||
"df_final['Vendas Ciclo Lançamento'] = df_final['Vendas Ciclo Lançamento'].fillna(0)\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 65,
|
||
"id": "69c88d20",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"np.int64(1)"
|
||
]
|
||
},
|
||
"execution_count": 65,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final['PDV'].value_counts().min()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 66,
|
||
"id": "f5206f50",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Index(['ESTOQUE ATUAL', 'ESTOQUE EM TRANSITO', 'PEDIDO PENDENTE',\n",
|
||
" 'DDV PREVISTO', 'preço', 'SKU_FINAL', 'DESCRICAO', 'C202415', 'C202416',\n",
|
||
" 'C202417', 'C202501', 'C202502', 'C202503', 'C202504', 'C202505',\n",
|
||
" 'C202506', 'C202507'],\n",
|
||
" dtype='object')"
|
||
]
|
||
},
|
||
"execution_count": 66,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final.columns[29:46]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 67,
|
||
"id": "5e33d293",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_jacobina = pd.read_excel(r\"../../SUPRIMENTOS/BD_LANÇAMENTOS/BOT/arquivos usados por todos os lançamentos/draft unificado.xlsx\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 68,
|
||
"id": "4d23ff5a",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_jacobina = df_jacobina[['PDV', 'SKU','202408', '202409',\n",
|
||
" '202410', '202411', '202412', '202413', '202414', '202415', '202416',\n",
|
||
" '202417', '202501', '202502', '202503', '202504', '202505', '202506',\n",
|
||
" '202507']]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 69,
|
||
"id": "5adc5831",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"ciclos = [\n",
|
||
" '202408', '202409', '202410', '202411', '202412', '202413',\n",
|
||
" '202414', '202415', '202416', '202417', '202501', '202502',\n",
|
||
" '202503', '202504', '202505', '202506', '202507']\n",
|
||
"\n",
|
||
"df_jacobina[ciclos] = df_jacobina[ciclos].fillna(0)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 70,
|
||
"id": "d3dc8c38",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>PDV</th>\n",
|
||
" <th>SKU</th>\n",
|
||
" <th>202408</th>\n",
|
||
" <th>202409</th>\n",
|
||
" <th>202410</th>\n",
|
||
" <th>202411</th>\n",
|
||
" <th>202412</th>\n",
|
||
" <th>202413</th>\n",
|
||
" <th>202414</th>\n",
|
||
" <th>202415</th>\n",
|
||
" <th>202416</th>\n",
|
||
" <th>202417</th>\n",
|
||
" <th>202501</th>\n",
|
||
" <th>202502</th>\n",
|
||
" <th>202503</th>\n",
|
||
" <th>202504</th>\n",
|
||
" <th>202505</th>\n",
|
||
" <th>202506</th>\n",
|
||
" <th>202507</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>24269</td>\n",
|
||
" <td>49014</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>5</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>3</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>4</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>24268</td>\n",
|
||
" <td>49014</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>4</td>\n",
|
||
" <td>4</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>5</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>3</td>\n",
|
||
" <td>4</td>\n",
|
||
" <td>4</td>\n",
|
||
" <td>3</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>4</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>1</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>24269</td>\n",
|
||
" <td>49016</td>\n",
|
||
" <td>36</td>\n",
|
||
" <td>3</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>14</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>19</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>10</td>\n",
|
||
" <td>0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>24268</td>\n",
|
||
" <td>49016</td>\n",
|
||
" <td>12</td>\n",
|
||
" <td>3</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>3</td>\n",
|
||
" <td>11</td>\n",
|
||
" <td>4</td>\n",
|
||
" <td>3</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>4</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>24269</td>\n",
|
||
" <td>48141</td>\n",
|
||
" <td>32</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>3</td>\n",
|
||
" <td>95</td>\n",
|
||
" <td>3</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>41</td>\n",
|
||
" <td>3</td>\n",
|
||
" <td>3</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>67</td>\n",
|
||
" <td>4</td>\n",
|
||
" <td>10</td>\n",
|
||
" <td>2</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" PDV SKU 202408 202409 202410 202411 202412 202413 202414 \\\n",
|
||
"0 24269 49014 1 0 5 1 1 1 2 \n",
|
||
"1 24268 49014 1 0 4 4 2 5 1 \n",
|
||
"2 24269 49016 36 3 1 1 1 0 14 \n",
|
||
"3 24268 49016 12 3 1 2 2 2 0 \n",
|
||
"4 24269 48141 32 2 3 95 3 2 41 \n",
|
||
"\n",
|
||
" 202415 202416 202417 202501 202502 202503 202504 202505 202506 \\\n",
|
||
"0 2 1 1 3 0 4 0 2 1 \n",
|
||
"1 3 4 4 3 0 2 4 2 0 \n",
|
||
"2 2 2 1 1 19 1 2 2 10 \n",
|
||
"3 0 3 11 4 3 0 4 2 1 \n",
|
||
"4 3 3 1 1 1 0 67 4 10 \n",
|
||
"\n",
|
||
" 202507 \n",
|
||
"0 0 \n",
|
||
"1 1 \n",
|
||
"2 0 \n",
|
||
"3 0 \n",
|
||
"4 2 "
|
||
]
|
||
},
|
||
"execution_count": 70,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_jacobina.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 71,
|
||
"id": "4169aba0",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>PRODUTO LANÇAMENTO</th>\n",
|
||
" <th>DESCRIÇÃO DO LANÇAMENTO</th>\n",
|
||
" <th>PRODUTO SIMILAR</th>\n",
|
||
" <th>DESCRIÇÃO SIMILAR</th>\n",
|
||
" <th>CICLO SIMILAR</th>\n",
|
||
" <th>FOCO</th>\n",
|
||
" <th>IAF</th>\n",
|
||
" <th>CATEGORIA</th>\n",
|
||
" <th>MARCA</th>\n",
|
||
" <th>% CONSUMIDOR</th>\n",
|
||
" <th>...</th>\n",
|
||
" <th>DURAÇÃO_x</th>\n",
|
||
" <th>match</th>\n",
|
||
" <th>dias_ate_inicio</th>\n",
|
||
" <th>Ciclo_y</th>\n",
|
||
" <th>INICIO CICLO_y</th>\n",
|
||
" <th>FIM CICLO_y</th>\n",
|
||
" <th>DURAÇÃO_y</th>\n",
|
||
" <th>SKU_y</th>\n",
|
||
" <th>Ciclo</th>\n",
|
||
" <th>Vendas Ciclo Lançamento</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ...</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>Body Splash Desodrante Colônia Cuide-se Bem Nu...</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>PERFUMARIA</td>\n",
|
||
" <td>CUIDE-SE BEM</td>\n",
|
||
" <td>-</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>45</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>2025-04-14</td>\n",
|
||
" <td>2025-05-11</td>\n",
|
||
" <td>28</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>40</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ...</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>Body Splash Desodrante Colônia Cuide-se Bem Nu...</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>PERFUMARIA</td>\n",
|
||
" <td>CUIDE-SE BEM</td>\n",
|
||
" <td>-</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>45</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>2025-04-14</td>\n",
|
||
" <td>2025-05-11</td>\n",
|
||
" <td>28</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>102</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ...</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>Body Splash Desodrante Colônia Cuide-se Bem Nu...</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>PERFUMARIA</td>\n",
|
||
" <td>CUIDE-SE BEM</td>\n",
|
||
" <td>-</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>45</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>2025-04-14</td>\n",
|
||
" <td>2025-05-11</td>\n",
|
||
" <td>28</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>15</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ...</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>Body Splash Desodrante Colônia Cuide-se Bem Nu...</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>PERFUMARIA</td>\n",
|
||
" <td>CUIDE-SE BEM</td>\n",
|
||
" <td>-</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>45</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>2025-04-14</td>\n",
|
||
" <td>2025-05-11</td>\n",
|
||
" <td>28</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>13</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ...</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>Body Splash Desodrante Colônia Cuide-se Bem Nu...</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>Não</td>\n",
|
||
" <td>PERFUMARIA</td>\n",
|
||
" <td>CUIDE-SE BEM</td>\n",
|
||
" <td>-</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>45</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>2025-04-14</td>\n",
|
||
" <td>2025-05-11</td>\n",
|
||
" <td>28</td>\n",
|
||
" <td>58363</td>\n",
|
||
" <td>C202506</td>\n",
|
||
" <td>24</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"<p>5 rows × 68 columns</p>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" PRODUTO LANÇAMENTO DESCRIÇÃO DO LANÇAMENTO \\\n",
|
||
"0 86116 CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ... \n",
|
||
"1 86116 CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ... \n",
|
||
"2 86116 CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ... \n",
|
||
"3 86116 CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ... \n",
|
||
"4 86116 CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ... \n",
|
||
"\n",
|
||
" PRODUTO SIMILAR DESCRIÇÃO SIMILAR \\\n",
|
||
"0 58363 Body Splash Desodrante Colônia Cuide-se Bem Nu... \n",
|
||
"1 58363 Body Splash Desodrante Colônia Cuide-se Bem Nu... \n",
|
||
"2 58363 Body Splash Desodrante Colônia Cuide-se Bem Nu... \n",
|
||
"3 58363 Body Splash Desodrante Colônia Cuide-se Bem Nu... \n",
|
||
"4 58363 Body Splash Desodrante Colônia Cuide-se Bem Nu... \n",
|
||
"\n",
|
||
" CICLO SIMILAR FOCO IAF CATEGORIA MARCA % CONSUMIDOR ... \\\n",
|
||
"0 C202506 Não Não PERFUMARIA CUIDE-SE BEM - ... \n",
|
||
"1 C202506 Não Não PERFUMARIA CUIDE-SE BEM - ... \n",
|
||
"2 C202506 Não Não PERFUMARIA CUIDE-SE BEM - ... \n",
|
||
"3 C202506 Não Não PERFUMARIA CUIDE-SE BEM - ... \n",
|
||
"4 C202506 Não Não PERFUMARIA CUIDE-SE BEM - ... \n",
|
||
"\n",
|
||
" DURAÇÃO_x match dias_ate_inicio Ciclo_y INICIO CICLO_y FIM CICLO_y \\\n",
|
||
"0 25 1 45 C202506 2025-04-14 2025-05-11 \n",
|
||
"1 25 1 45 C202506 2025-04-14 2025-05-11 \n",
|
||
"2 25 1 45 C202506 2025-04-14 2025-05-11 \n",
|
||
"3 25 1 45 C202506 2025-04-14 2025-05-11 \n",
|
||
"4 25 1 45 C202506 2025-04-14 2025-05-11 \n",
|
||
"\n",
|
||
" DURAÇÃO_y SKU_y Ciclo Vendas Ciclo Lançamento \n",
|
||
"0 28 58363 C202506 40 \n",
|
||
"1 28 58363 C202506 102 \n",
|
||
"2 28 58363 C202506 15 \n",
|
||
"3 28 58363 C202506 13 \n",
|
||
"4 28 58363 C202506 24 \n",
|
||
"\n",
|
||
"[5 rows x 68 columns]"
|
||
]
|
||
},
|
||
"execution_count": 71,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final['PRODUTO SIMILAR'] = df_final['PRODUTO SIMILAR'].astype('Int64')\n",
|
||
"\n",
|
||
"df_final.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 72,
|
||
"id": "1c4f5d9d",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_final = pd.merge(left=df_final,right=df_jacobina,left_on=['PRODUTO SIMILAR','PDV'],right_on=['SKU','PDV'],how='left')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 73,
|
||
"id": "2529e624",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Gera pares de colunas: coluna estática ↔ coluna de histórico\n",
|
||
"pares_validos = [\n",
|
||
" (ciclo, f'Histórico de Vendas do Ciclo {ciclo}')\n",
|
||
" for ciclo in ciclos\n",
|
||
" if ciclo in df_final.columns and f'Histórico de Vendas do Ciclo {ciclo}' in df_final.columns\n",
|
||
"]\n",
|
||
"\n",
|
||
"# Separa os nomes das colunas\n",
|
||
"colunas_estaticas = [c[0] for c in pares_validos]\n",
|
||
"colunas_historico = [c[1] for c in pares_validos]\n",
|
||
"\n",
|
||
"# Aplica a regra: se valor na coluna estática for maior, sobrescreve no histórico\n",
|
||
"for col_estatica, col_hist in zip(colunas_estaticas, colunas_historico):\n",
|
||
" df_final[col_hist] = df_final[col_estatica].where(\n",
|
||
" df_final[col_estatica] > df_final[col_hist],\n",
|
||
" df_final[col_hist]\n",
|
||
" )\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 74,
|
||
"id": "dcff1fcb",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_final = df_final.fillna(0)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 75,
|
||
"id": "bebabb9f",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Index(['C202415', 'C202416', 'C202417', 'C202501', 'C202502', 'C202503',\n",
|
||
" 'C202504', 'C202505', 'C202506', 'C202507', 'C202508', 'C202509',\n",
|
||
" 'C202510', 'C202511', 'C202512', 'C202513', 'C202514', 'C202515'],\n",
|
||
" dtype='object')"
|
||
]
|
||
},
|
||
"execution_count": 75,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# VERIFICAR SE TEM OS 17 CICLOS DE VENDA\n",
|
||
"df_final.columns[36:54]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 76,
|
||
"id": "0a1bb832",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"0.2"
|
||
]
|
||
},
|
||
"execution_count": 76,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Suponha que os meses estão nas colunas 10 a 26 (17 colunas = 17 meses)\n",
|
||
"colunas_mensais = df_final.columns[36:54]\n",
|
||
"# Passo 1: Soma todas as linhas (itens) por mês → resultado: total por mês\n",
|
||
"soma_mensal = df_final[colunas_mensais].sum()\n",
|
||
"\n",
|
||
"# Passo 2: Calcula a variação percentual de um mês para o outro\n",
|
||
"variacao_mensal = soma_mensal.pct_change()\n",
|
||
"variacao_mensal = variacao_mensal.dropna()\n",
|
||
"\n",
|
||
"variacao_mensal = variacao_mensal[np.isfinite(variacao_mensal)]\n",
|
||
"\n",
|
||
"# Passo 3: Calcula a média da variação (ignorando o primeiro NaN)\n",
|
||
"media_variacao = variacao_mensal[1:].mean()\n",
|
||
"\n",
|
||
"# Calcula média e desvio padrão\n",
|
||
"media = variacao_mensal.mean()\n",
|
||
"desvio = variacao_mensal.std()\n",
|
||
"\n",
|
||
"# Define limite (ex: 2 desvios padrão)\n",
|
||
"limite_superior = media + 2 * desvio\n",
|
||
"limite_inferior = media - 2 * desvio\n",
|
||
"\n",
|
||
"# Filtra dados dentro do limite\n",
|
||
"filtro = variacao_mensal.between(limite_inferior, limite_superior)\n",
|
||
"df_filtrado = variacao_mensal[filtro]\n",
|
||
"CRESCIMENTO = round(df_filtrado.mean(),4)\n",
|
||
"\n",
|
||
"CRESCIMENTO = 0.2 if CRESCIMENTO < 0.2 else CRESCIMENTO\n",
|
||
"\n",
|
||
"df_final['CRESCIMENTO_GERAL'] = CRESCIMENTO\n",
|
||
"\n",
|
||
"CRESCIMENTO\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 77,
|
||
"id": "a9647c32",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_final = df_final.drop(columns='Ciclo_y')\n",
|
||
"\n",
|
||
"df_final = df_final.rename(columns={'Ciclo_x': 'Ciclo',\t'INICIO CICLO_x': 'INICIO CICLO',\t'FIM CICLO_x':'FIM CICLO' ,'DURAÇÃO_x':'DURAÇÃO',\n",
|
||
" \t'INICIO CICLO_y': 'INICIO CICLO SIMILAR' ,\t'FIM CICLO_y': 'FIM CICLO SIMILAR','DURAÇÃO_y':'DURAÇÃO CICLO SIMILAR'})"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 78,
|
||
"id": "b107e519",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Index(['C202509', 'C202510', 'C202511', 'C202512', 'C202513', 'C202514',\n",
|
||
" 'C202515'],\n",
|
||
" dtype='object')"
|
||
]
|
||
},
|
||
"execution_count": 78,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# VERIFICAR SE AS 6 ULTIMAS COLUNAS SÃO DE VENDA CICLO\n",
|
||
"df_final.columns[47:54]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 79,
|
||
"id": "8290853c",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"VENDA_SIMILAR_6_MESES= df_final.columns[47:54]\n",
|
||
"df_final['Pico Vendas Similar Ultimos 6 ciclos'] = df_final[VENDA_SIMILAR_6_MESES].max(axis=1)\n",
|
||
"\n",
|
||
"df_final['Pico Vendas Similar Ultimos 6 ciclos'] = df_final['Pico Vendas Similar Ultimos 6 ciclos'].fillna(0)\n",
|
||
"\n",
|
||
"df_final['MEDIANA DO HISTÓRICO'] = df_final[colunas_mensais].median(axis=1, skipna=True)\n",
|
||
"\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 80,
|
||
"id": "d8b30560",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"0 0.0\n",
|
||
"1 1.0\n",
|
||
"2 0.0\n",
|
||
"3 0.0\n",
|
||
"4 0.0\n",
|
||
" ... \n",
|
||
"71 0.0\n",
|
||
"72 0.0\n",
|
||
"73 0.0\n",
|
||
"74 0.0\n",
|
||
"75 0.0\n",
|
||
"Length: 76, dtype: float64"
|
||
]
|
||
},
|
||
"execution_count": 80,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final[colunas_mensais].median(axis=1, skipna=True)\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 81,
|
||
"id": "07f043f2",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>CANAL</th>\n",
|
||
" <th>UF</th>\n",
|
||
" <th>PRODUTO LANÇAMENTO</th>\n",
|
||
" <th>med_por_canal</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>CD</td>\n",
|
||
" <td>AL</td>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>HIB</td>\n",
|
||
" <td>AL</td>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>HIB</td>\n",
|
||
" <td>BA</td>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>HIB</td>\n",
|
||
" <td>SE</td>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>0.5</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>LJ</td>\n",
|
||
" <td>AL</td>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>5</th>\n",
|
||
" <td>LJ</td>\n",
|
||
" <td>BA</td>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>0.5</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>6</th>\n",
|
||
" <td>LJ</td>\n",
|
||
" <td>SE</td>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>0.5</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>7</th>\n",
|
||
" <td>VD</td>\n",
|
||
" <td>AL</td>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>4.5</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>8</th>\n",
|
||
" <td>VD</td>\n",
|
||
" <td>BA</td>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>2.0</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>9</th>\n",
|
||
" <td>VD</td>\n",
|
||
" <td>SE</td>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>4.0</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" CANAL UF PRODUTO LANÇAMENTO med_por_canal\n",
|
||
"0 CD AL 86116 0.0\n",
|
||
"1 HIB AL 86116 1.0\n",
|
||
"2 HIB BA 86116 1.0\n",
|
||
"3 HIB SE 86116 0.5\n",
|
||
"4 LJ AL 86116 1.0\n",
|
||
"5 LJ BA 86116 0.5\n",
|
||
"6 LJ SE 86116 0.5\n",
|
||
"7 VD AL 86116 4.5\n",
|
||
"8 VD BA 86116 2.0\n",
|
||
"9 VD SE 86116 4.0"
|
||
]
|
||
},
|
||
"execution_count": 81,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"medi = df_final.groupby(['CANAL','UF','PRODUTO LANÇAMENTO'])['MEDIANA DO HISTÓRICO'].max().reset_index()\n",
|
||
"medi = medi.rename(columns={'MEDIANA DO HISTÓRICO':'med_por_canal'})\n",
|
||
"medi"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 82,
|
||
"id": "ef979be5",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_dourado = pd.read_excel(r\"../../SUPRIMENTOS/BD_LANÇAMENTOS/BOT/arquivos usados por todos os lançamentos/compilado de vendas.xlsx\")\n",
|
||
"\n",
|
||
"df_dourado['Data de venda'] = pd.to_datetime(df_dourado['Data de venda'], dayfirst=True)\n",
|
||
"\n",
|
||
"df_dourado['de para pdv'] = df_dourado['de para pdv'].astype(str)\n",
|
||
"\n",
|
||
"df_dourado['de para pdv'] = df_dourado['de para pdv'].str.replace(r'\\.0$', '', regex=True)\n",
|
||
"\n",
|
||
"# 'Dia' já está em formato datetime, então renomeamos para 'Data' diretamente\n",
|
||
"# ou apenas usamos 'Dia' como referência de data\n",
|
||
"\n",
|
||
"# Ordena o DataFrame para garantir que a cumulativa funcione corretamente\n",
|
||
"df_venda_diaria = df_venda_diaria.sort_values(by=['PDV', 'SKU', 'Ciclo'])\n",
|
||
"\n",
|
||
"# Calcula a quantidade acumulada até o dia para cada grupo\n",
|
||
"df_dourado['Quantidade Acumulada dourado'] = (\n",
|
||
" df_dourado\n",
|
||
" .groupby(['de para pdv', 'sku'])['Quantidade Vendida']\n",
|
||
" .cumsum()\n",
|
||
") # acumulado por grupo até a data da linha\n",
|
||
"\n",
|
||
"df_dourado = pd.merge(left=df_dourado,right=calendario[['Date','Ciclo']],left_on='Data de venda',right_on='Date',how='inner')\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"df_dourado_agrupado = df_dourado.groupby(['de para pdv','sku','Ciclo'])['Quantidade Acumulada dourado'].max().reset_index()\n",
|
||
"\n",
|
||
"df_dourado_agrupado = df_dourado_agrupado.rename(columns={'Ciclo':'Ciclo dourado'})\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 83,
|
||
"id": "41eb7ebf",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"0 12522\n",
|
||
"1 12817\n",
|
||
"2 12818\n",
|
||
"3 12820\n",
|
||
"4 12823\n",
|
||
"Name: PDV, dtype: object"
|
||
]
|
||
},
|
||
"execution_count": 83,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final['PDV'] = df_final['PDV'].astype(str)\n",
|
||
"df_final['PDV'].head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 84,
|
||
"id": "6dbe67bb",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_final = pd.merge(left=df_final, right = df_dourado_agrupado, right_on=['Ciclo dourado','sku','de para pdv'],left_on=['CICLO SIMILAR','PRODUTO SIMILAR','PDV'],how='left')\n",
|
||
"\n",
|
||
"df_final['Quantidade Acumulada dourado'] = df_final['Quantidade Acumulada dourado'].fillna(0)\n",
|
||
"\n",
|
||
"\n",
|
||
"df_final['Vendas Ciclo Lançamento'] = np.where(df_final['Quantidade Acumulada dourado'] > 0, df_final['Quantidade Acumulada dourado'], df_final['Vendas Ciclo Lançamento'])\n",
|
||
"\n",
|
||
"df_final = df_final.drop(columns='Quantidade Acumulada dourado')\n",
|
||
"\n",
|
||
"\n",
|
||
"df_final = df_final.drop(columns='Ciclo dourado')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 85,
|
||
"id": "7986b8fa",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>CP VIVA BEM</th>\n",
|
||
" <th>Protheus</th>\n",
|
||
" <th>PDVDEPARA.Practico</th>\n",
|
||
" <th>Canal</th>\n",
|
||
" <th>Endereço</th>\n",
|
||
" <th>CNPJ</th>\n",
|
||
" <th>CNPJ Locação</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>3559</td>\n",
|
||
" <td>70101.0</td>\n",
|
||
" <td>23713.0</td>\n",
|
||
" <td>MATRIZ - LJ</td>\n",
|
||
" <td>Rua Zeferino Correia, nº 17, Centro, CEP 45.00...</td>\n",
|
||
" <td>14.378.160/0001-83</td>\n",
|
||
" <td>14.378.160/0001-83</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>7292</td>\n",
|
||
" <td>70103.0</td>\n",
|
||
" <td>23712.0</td>\n",
|
||
" <td>LOJA</td>\n",
|
||
" <td>Al. Rio Branco, nº 373, Centro, Cândido Sales ...</td>\n",
|
||
" <td>14.378.160/0006-98</td>\n",
|
||
" <td>14.378.160/0006-98</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>8708</td>\n",
|
||
" <td>70102.0</td>\n",
|
||
" <td>23711.0</td>\n",
|
||
" <td>VD</td>\n",
|
||
" <td>Al. Lima Guerra, nº 04, Centro, Vitória da Con...</td>\n",
|
||
" <td>14.378.160/0005-07</td>\n",
|
||
" <td>14.378.160/0001-83</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>8931</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>23710.0</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>Avenida Rosa Cruz, nº 80, Hiper B Preço Loja B...</td>\n",
|
||
" <td>14.378.160/0008-50</td>\n",
|
||
" <td>14.378.160/0008-50</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>11191</td>\n",
|
||
" <td>70108.0</td>\n",
|
||
" <td>23709.0</td>\n",
|
||
" <td>LOJA</td>\n",
|
||
" <td>Av. Juracy Magalhães, nº 3340, Shopping Conqui...</td>\n",
|
||
" <td>14.378.160/0009-30</td>\n",
|
||
" <td>14.378.160/0001-83</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" CP VIVA BEM Protheus PDVDEPARA.Practico Canal \\\n",
|
||
"0 3559 70101.0 23713.0 MATRIZ - LJ \n",
|
||
"1 7292 70103.0 23712.0 LOJA \n",
|
||
"2 8708 70102.0 23711.0 VD \n",
|
||
"3 8931 NaN 23710.0 NaN \n",
|
||
"4 11191 70108.0 23709.0 LOJA \n",
|
||
"\n",
|
||
" Endereço CNPJ \\\n",
|
||
"0 Rua Zeferino Correia, nº 17, Centro, CEP 45.00... 14.378.160/0001-83 \n",
|
||
"1 Al. Rio Branco, nº 373, Centro, Cândido Sales ... 14.378.160/0006-98 \n",
|
||
"2 Al. Lima Guerra, nº 04, Centro, Vitória da Con... 14.378.160/0005-07 \n",
|
||
"3 Avenida Rosa Cruz, nº 80, Hiper B Preço Loja B... 14.378.160/0008-50 \n",
|
||
"4 Av. Juracy Magalhães, nº 3340, Shopping Conqui... 14.378.160/0009-30 \n",
|
||
"\n",
|
||
" CNPJ Locação \n",
|
||
"0 14.378.160/0001-83 \n",
|
||
"1 14.378.160/0006-98 \n",
|
||
"2 14.378.160/0001-83 \n",
|
||
"3 14.378.160/0008-50 \n",
|
||
"4 14.378.160/0001-83 "
|
||
]
|
||
},
|
||
"execution_count": 85,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_depara_vdc = pd.read_excel(r\"../../SUPRIMENTOS/BD_LANÇAMENTOS/BOT/arquivos usados por todos os lançamentos/Filiais - Vitoria da Conquista 4.xlsx\")\n",
|
||
"\n",
|
||
"df_depara_vdc.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 86,
|
||
"id": "84b5917c",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_final['PRODUTO SIMILAR'] = df_final['PRODUTO SIMILAR'].astype('Int64')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 87,
|
||
"id": "1a625e69",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"(76, 92)"
|
||
]
|
||
},
|
||
"execution_count": 87,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"\n",
|
||
"# Cálculo do crescimento\n",
|
||
"crescimento_final = df_final['CRESCIMENTO_GERAL'] + df_final['CRESCIMENTO']\n",
|
||
"crescimento_final = crescimento_final.clip(lower=0.2, upper=0.8) # limita entre 0 e 0.8\n",
|
||
"df_final['CRESCIMENTO_FINAL'] = crescimento_final\n",
|
||
"\n",
|
||
"df_final['CRESCIMENTO_FINAL'] = np.where(df_final['CRESCIMENTO_FINAL'].isna(),df_final['CRESCIMENTO_GERAL'],df_final['CRESCIMENTO_FINAL'])\n",
|
||
"\n",
|
||
"df_final['CRESCIMENTO_FINAL'] = df_final['CRESCIMENTO_FINAL'].fillna(0)\n",
|
||
"\n",
|
||
"df_final['MEDIANA DO HISTÓRICO'] = df_final['MEDIANA DO HISTÓRICO'].fillna(0)\n",
|
||
"\n",
|
||
"# Corrige mediana do histórico onde for zero\n",
|
||
"df_final['MEDIANA DO HISTÓRICO'] = np.where(\n",
|
||
" df_final['MEDIANA DO HISTÓRICO'] == 0,\n",
|
||
" 0,\n",
|
||
" df_final['MEDIANA DO HISTÓRICO']\n",
|
||
")\n",
|
||
"\n",
|
||
"df_final['MEDIANA DO HISTÓRICO'] = df_final['MEDIANA DO HISTÓRICO'].fillna(0)\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"# Cálculo do PV GINSENG\n",
|
||
"pv_crescimento = (df_final['CRESCIMENTO_FINAL']+1) * df_final['Vendas Ciclo Lançamento']\n",
|
||
"pv_mediana = (df_final['CRESCIMENTO_FINAL'] + 1) * df_final['MEDIANA DO HISTÓRICO']\n",
|
||
"\n",
|
||
"df_final['PV GINSENG'] = np.where(\n",
|
||
" pv_crescimento < df_final['MEDIANA DO HISTÓRICO'],\n",
|
||
" pv_mediana.round(0),\n",
|
||
" pv_crescimento.round(0)\n",
|
||
")\n",
|
||
"\n",
|
||
"# Se PV GINSENG for NA, substitui pela média por canal\n",
|
||
"df_final['PV GINSENG'] = df_final['PV GINSENG'].fillna(0)\n",
|
||
"\n",
|
||
"df_final['PV GINSENG'] = df_final['PV GINSENG'].round(0).astype(int)\n",
|
||
"\n",
|
||
"df_final.shape\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 88,
|
||
"id": "30c1d83d",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Index(['202408', '202409', '202410', '202411', '202412', '202413', '202414',\n",
|
||
" '202415', '202416', '202417', '202501', '202502', '202503', '202504',\n",
|
||
" '202505', '202506', '202507'],\n",
|
||
" dtype='object')\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# verificar as vendas dos ciclos\n",
|
||
"print(df_final.columns[68:85])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 89,
|
||
"id": "62b7f9d1",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Index(['PRODUTO LANÇAMENTO', 'DESCRIÇÃO DO LANÇAMENTO', 'PRODUTO SIMILAR',\n",
|
||
" 'DESCRIÇÃO SIMILAR', 'CICLO SIMILAR', 'FOCO', 'IAF', 'CATEGORIA',\n",
|
||
" 'MARCA', '% CONSUMIDOR', 'MECANICA CONSUMIDOR', '% REVENDEDOR',\n",
|
||
" 'MECANICA REVENDEDOR', 'TIPO DE PRODUTO', 'MATCH', 'PDV', 'CANAL',\n",
|
||
" 'DESCRIÇÃO PDV', 'PDV DESC', 'UF', 'ANALISTA', 'SUPERVISOR', 'STATUS',\n",
|
||
" 'ANALISTA EUD', 'SKU_x', 'curva', 'categoria', 'proj_mar', 'proj_mar+1',\n",
|
||
" 'ESTOQUE ATUAL', 'ESTOQUE EM TRANSITO', 'PEDIDO PENDENTE',\n",
|
||
" 'DDV PREVISTO', 'preço', 'SKU_FINAL', 'DESCRICAO', 'C202415', 'C202416',\n",
|
||
" 'C202417', 'C202501', 'C202502', 'C202503', 'C202504', 'C202505',\n",
|
||
" 'C202506', 'C202507', 'C202508', 'C202509', 'C202510', 'C202511',\n",
|
||
" 'C202512', 'C202513', 'C202514', 'C202515', 'CRESCIMENTO', 'Ciclo',\n",
|
||
" 'INICIO CICLO', 'FIM CICLO', 'DURAÇÃO', 'match', 'dias_ate_inicio',\n",
|
||
" 'INICIO CICLO SIMILAR', 'FIM CICLO SIMILAR', 'DURAÇÃO CICLO SIMILAR',\n",
|
||
" 'SKU_y', 'Ciclo', 'Vendas Ciclo Lançamento', 'SKU', 'CRESCIMENTO_GERAL',\n",
|
||
" 'Pico Vendas Similar Ultimos 6 ciclos', 'MEDIANA DO HISTÓRICO',\n",
|
||
" 'de para pdv', 'sku', 'CRESCIMENTO_FINAL', 'PV GINSENG'],\n",
|
||
" dtype='object')"
|
||
]
|
||
},
|
||
"execution_count": 89,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"import re\n",
|
||
"\n",
|
||
"# identificar colunas de ciclo puro (ex: '202407')\n",
|
||
"colunas_ciclo_puro = [col for col in df_final.columns[68:85]]\n",
|
||
"\n",
|
||
"for col in colunas_ciclo_puro:\n",
|
||
" col_hist = f'C{col}'\n",
|
||
" if col_hist in df_final.columns:\n",
|
||
" # mantém o maior valor entre a coluna histórica e a pura\n",
|
||
" df_final[col_hist] = df_final[[col_hist, col]].max(axis=1)\n",
|
||
"\n",
|
||
"# remove as colunas puras\n",
|
||
"if colunas_ciclo_puro:\n",
|
||
" df_final.drop(columns=colunas_ciclo_puro, inplace=True)\n",
|
||
"\n",
|
||
"df_final.columns"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 90,
|
||
"id": "3b7f3a82",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Index(['C202511', 'C202512', 'C202513', 'C202514', 'C202515'], dtype='object')"
|
||
]
|
||
},
|
||
"execution_count": 90,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final.columns[49:54]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 91,
|
||
"id": "d63e55c4",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_final['Pico Vendas Similar Ultimos 6 ciclos'] = df_final[VENDA_SIMILAR_6_MESES].max(axis=1)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 92,
|
||
"id": "15b7149f",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_final = df_final.rename(columns={df_final.columns[49]: \"C-4\", df_final.columns[50]: \"C-3\",df_final.columns[51]: \"C-2\",df_final.columns[52]: \"C-1\",df_final.columns[53]:'VENDAS CICLO ATUAL'})\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 93,
|
||
"id": "9333bc77",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Index(['PRODUTO LANÇAMENTO', 'DESCRIÇÃO DO LANÇAMENTO', 'PRODUTO SIMILAR',\n",
|
||
" 'DESCRIÇÃO SIMILAR', 'CICLO SIMILAR', 'FOCO', 'IAF', 'CATEGORIA',\n",
|
||
" 'MARCA', '% CONSUMIDOR', 'MECANICA CONSUMIDOR', '% REVENDEDOR',\n",
|
||
" 'MECANICA REVENDEDOR', 'TIPO DE PRODUTO', 'MATCH', 'PDV', 'CANAL',\n",
|
||
" 'DESCRIÇÃO PDV', 'PDV DESC', 'UF', 'ANALISTA', 'SUPERVISOR', 'STATUS',\n",
|
||
" 'ANALISTA EUD', 'SKU_X', 'CURVA', 'CATEGORIA', 'PROJ_MAR', 'PROJ_MAR+1',\n",
|
||
" 'ESTOQUE ATUAL', 'ESTOQUE EM TRANSITO', 'PEDIDO PENDENTE',\n",
|
||
" 'DDV PREVISTO', 'PREÇO', 'SKU_FINAL', 'DESCRICAO', 'C202415', 'C202416',\n",
|
||
" 'C202417', 'C202501', 'C202502', 'C202503', 'C202504', 'C202505',\n",
|
||
" 'C202506', 'C202507', 'C202508', 'C202509', 'C202510', 'C-4', 'C-3',\n",
|
||
" 'C-2', 'C-1', 'VENDAS CICLO ATUAL', 'CRESCIMENTO', 'CICLO',\n",
|
||
" 'INICIO CICLO', 'FIM CICLO', 'DURAÇÃO', 'MATCH', 'DIAS_ATE_INICIO',\n",
|
||
" 'INICIO CICLO SIMILAR', 'FIM CICLO SIMILAR', 'DURAÇÃO CICLO SIMILAR',\n",
|
||
" 'CICLO', 'VENDAS CICLO LANÇAMENTO', 'SKU', 'CRESCIMENTO_GERAL',\n",
|
||
" 'PICO VENDAS SIMILAR ULTIMOS 6 CICLOS', 'MEDIANA DO HISTÓRICO',\n",
|
||
" 'DE PARA PDV', 'SKU', 'CRESCIMENTO_FINAL', 'PV GINSENG'],\n",
|
||
" dtype='object')"
|
||
]
|
||
},
|
||
"execution_count": 93,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final.columns = df_final.columns.str.upper()\n",
|
||
"\n",
|
||
"df_final.drop(columns=df_final.filter(regex='_Y').columns, inplace=True)\n",
|
||
"\n",
|
||
"df_final.columns"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 94,
|
||
"id": "dceebd16",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_final = df_final.rename(columns={'MARCA_X':'MARCA'})"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 95,
|
||
"id": "62ce5c62",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"(76, 74)"
|
||
]
|
||
},
|
||
"execution_count": 95,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final.shape"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 96,
|
||
"id": "cecca116",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_final[['C-4', 'C-3', 'C-2', 'C-1', 'VENDAS CICLO ATUAL']] = df_final[['C-4', 'C-3', 'C-2', 'C-1', 'VENDAS CICLO ATUAL']].fillna(0)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 97,
|
||
"id": "8ad318b0",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_final = df_final.loc[:, ~df_final.columns.duplicated()]\n",
|
||
"\n",
|
||
"colunas_desejadas = [\n",
|
||
" 'SUPERVISOR',\n",
|
||
" 'ANALISTA',\n",
|
||
" 'CANAL',\n",
|
||
" 'UF',\n",
|
||
" 'PDV',\n",
|
||
" 'DESCRIÇÃO PDV',\n",
|
||
" 'PRODUTO LANÇAMENTO',\n",
|
||
" 'DESCRIÇÃO DO LANÇAMENTO',\n",
|
||
" 'MARCA',\n",
|
||
" 'CURVA',\n",
|
||
" 'CATEGORIA',\n",
|
||
" '% CONSUMIDOR',\n",
|
||
" 'MECANICA CONSUMIDOR',\n",
|
||
" '% REVENDEDOR',\n",
|
||
" 'MECANICA REVENDEDOR',\n",
|
||
" 'TIPO DE PRODUTO',\n",
|
||
" 'IAF',\n",
|
||
" 'FOCO',\n",
|
||
" 'PRODUTO SIMILAR',\n",
|
||
" 'DESCRIÇÃO SIMILAR',\n",
|
||
" 'CICLO SIMILAR',\n",
|
||
" 'VENDAS CICLO LANÇAMENTO',\n",
|
||
" 'C-4',\n",
|
||
" 'C-3',\n",
|
||
" 'C-2',\n",
|
||
" 'C-1',\n",
|
||
" 'VENDAS CICLO ATUAL',\n",
|
||
" 'PICO VENDAS SIMILAR ULTIMOS 6 CICLOS',\n",
|
||
" 'PV GINSENG'\n",
|
||
"]\n",
|
||
"\n",
|
||
"df_final = df_final.reindex(columns=colunas_desejadas)\n",
|
||
"\n",
|
||
"colunas_filtradas = [col for col in colunas_desejadas if col in df_final.columns]\n",
|
||
"df_final = df_final[colunas_filtradas]\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 98,
|
||
"id": "a3e80cb4",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_final['SUGESTÃO METASELLIN'] = ''\n",
|
||
"df_final['SUGESTÃO ABASTECIMENTO'] = ''\n",
|
||
"df_final['SUGESTÃO COMERCIAL'] = ''\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 99,
|
||
"id": "cc9c6ee6",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_pdv_origi['PDV'] = df_pdv_origi['PDV'].astype(str)\n",
|
||
"\n",
|
||
"df_pdv_origi['PDV'].head()\n",
|
||
"\n",
|
||
"df_pdv_origi = df_pdv_origi.rename(columns={'UF':'UF_CERTO'})"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 100,
|
||
"id": "df9f0130",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"#adicionando o UF correto ao fim do script\n",
|
||
"df_final= pd.merge(df_final,df_pdv_origi[['UF_CERTO','PDV']],on='PDV',how='inner')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 101,
|
||
"id": "f8cd886a",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>SUPERVISOR</th>\n",
|
||
" <th>ANALISTA</th>\n",
|
||
" <th>CANAL</th>\n",
|
||
" <th>UF</th>\n",
|
||
" <th>PDV</th>\n",
|
||
" <th>DESCRIÇÃO PDV</th>\n",
|
||
" <th>PRODUTO LANÇAMENTO</th>\n",
|
||
" <th>DESCRIÇÃO DO LANÇAMENTO</th>\n",
|
||
" <th>MARCA</th>\n",
|
||
" <th>CURVA</th>\n",
|
||
" <th>...</th>\n",
|
||
" <th>C-4</th>\n",
|
||
" <th>C-3</th>\n",
|
||
" <th>C-2</th>\n",
|
||
" <th>C-1</th>\n",
|
||
" <th>VENDAS CICLO ATUAL</th>\n",
|
||
" <th>PICO VENDAS SIMILAR ULTIMOS 6 CICLOS</th>\n",
|
||
" <th>PV GINSENG</th>\n",
|
||
" <th>SUGESTÃO METASELLIN</th>\n",
|
||
" <th>SUGESTÃO ABASTECIMENTO</th>\n",
|
||
" <th>SUGESTÃO COMERCIAL</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>Efigênia Herculano</td>\n",
|
||
" <td>LUAN</td>\n",
|
||
" <td>LJ</td>\n",
|
||
" <td>AL</td>\n",
|
||
" <td>12522</td>\n",
|
||
" <td>MACEIO SHOP EXP</td>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ...</td>\n",
|
||
" <td>CUIDE-SE BEM</td>\n",
|
||
" <td>A</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>7.0</td>\n",
|
||
" <td>5.0</td>\n",
|
||
" <td>4.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>8.0</td>\n",
|
||
" <td>48</td>\n",
|
||
" <td></td>\n",
|
||
" <td></td>\n",
|
||
" <td></td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>Maxwell Vieira</td>\n",
|
||
" <td>JEFFERSON</td>\n",
|
||
" <td>LJ</td>\n",
|
||
" <td>AL</td>\n",
|
||
" <td>12817</td>\n",
|
||
" <td>SHOPPING PATIO</td>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ...</td>\n",
|
||
" <td>CUIDE-SE BEM</td>\n",
|
||
" <td>B</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>39.0</td>\n",
|
||
" <td>7.0</td>\n",
|
||
" <td>12.0</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>39.0</td>\n",
|
||
" <td>122</td>\n",
|
||
" <td></td>\n",
|
||
" <td></td>\n",
|
||
" <td></td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>Maxwell Vieira</td>\n",
|
||
" <td>VINICIUS</td>\n",
|
||
" <td>LJ</td>\n",
|
||
" <td>AL</td>\n",
|
||
" <td>12818</td>\n",
|
||
" <td>GB SERRARIA</td>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ...</td>\n",
|
||
" <td>CUIDE-SE BEM</td>\n",
|
||
" <td>B</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>5.0</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>1.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>5.0</td>\n",
|
||
" <td>18</td>\n",
|
||
" <td></td>\n",
|
||
" <td></td>\n",
|
||
" <td></td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>Maxwell Vieira</td>\n",
|
||
" <td>ADRIELY</td>\n",
|
||
" <td>LJ</td>\n",
|
||
" <td>AL</td>\n",
|
||
" <td>12820</td>\n",
|
||
" <td>ATACADÃO</td>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ...</td>\n",
|
||
" <td>CUIDE-SE BEM</td>\n",
|
||
" <td>B</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>8.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>2.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>8.0</td>\n",
|
||
" <td>16</td>\n",
|
||
" <td></td>\n",
|
||
" <td></td>\n",
|
||
" <td></td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>Efigênia Herculano</td>\n",
|
||
" <td>ADRIELY</td>\n",
|
||
" <td>LJ</td>\n",
|
||
" <td>AL</td>\n",
|
||
" <td>12823</td>\n",
|
||
" <td>PONTA VERDE</td>\n",
|
||
" <td>86116</td>\n",
|
||
" <td>CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ...</td>\n",
|
||
" <td>CUIDE-SE BEM</td>\n",
|
||
" <td>A</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>14.0</td>\n",
|
||
" <td>11.0</td>\n",
|
||
" <td>9.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>0.0</td>\n",
|
||
" <td>14.0</td>\n",
|
||
" <td>29</td>\n",
|
||
" <td></td>\n",
|
||
" <td></td>\n",
|
||
" <td></td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"<p>5 rows × 32 columns</p>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" SUPERVISOR ANALISTA CANAL UF PDV DESCRIÇÃO PDV \\\n",
|
||
"0 Efigênia Herculano LUAN LJ AL 12522 MACEIO SHOP EXP \n",
|
||
"1 Maxwell Vieira JEFFERSON LJ AL 12817 SHOPPING PATIO \n",
|
||
"2 Maxwell Vieira VINICIUS LJ AL 12818 GB SERRARIA \n",
|
||
"3 Maxwell Vieira ADRIELY LJ AL 12820 ATACADÃO \n",
|
||
"4 Efigênia Herculano ADRIELY LJ AL 12823 PONTA VERDE \n",
|
||
"\n",
|
||
" PRODUTO LANÇAMENTO DESCRIÇÃO DO LANÇAMENTO \\\n",
|
||
"0 86116 CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ... \n",
|
||
"1 86116 CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ... \n",
|
||
"2 86116 CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ... \n",
|
||
"3 86116 CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ... \n",
|
||
"4 86116 CUIDE-SE BEM DOCES DELÍRIOS ALGODÃO DOCE BODY ... \n",
|
||
"\n",
|
||
" MARCA CURVA ... C-4 C-3 C-2 C-1 VENDAS CICLO ATUAL \\\n",
|
||
"0 CUIDE-SE BEM A ... 7.0 5.0 4.0 0.0 0.0 \n",
|
||
"1 CUIDE-SE BEM B ... 39.0 7.0 12.0 3.0 0.0 \n",
|
||
"2 CUIDE-SE BEM B ... 5.0 1.0 3.0 1.0 0.0 \n",
|
||
"3 CUIDE-SE BEM B ... 8.0 0.0 2.0 0.0 0.0 \n",
|
||
"4 CUIDE-SE BEM A ... 14.0 11.0 9.0 0.0 0.0 \n",
|
||
"\n",
|
||
" PICO VENDAS SIMILAR ULTIMOS 6 CICLOS PV GINSENG SUGESTÃO METASELLIN \\\n",
|
||
"0 8.0 48 \n",
|
||
"1 39.0 122 \n",
|
||
"2 5.0 18 \n",
|
||
"3 8.0 16 \n",
|
||
"4 14.0 29 \n",
|
||
"\n",
|
||
" SUGESTÃO ABASTECIMENTO SUGESTÃO COMERCIAL \n",
|
||
"0 \n",
|
||
"1 \n",
|
||
"2 \n",
|
||
"3 \n",
|
||
"4 \n",
|
||
"\n",
|
||
"[5 rows x 32 columns]"
|
||
]
|
||
},
|
||
"execution_count": 101,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final['UF']= df_final['UF_CERTO']\n",
|
||
"\n",
|
||
"df_final = df_final.drop(columns=['UF_CERTO'])\n",
|
||
"\n",
|
||
"df_final.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 102,
|
||
"id": "eaf25e4b",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Index(['SUPERVISOR', 'ANALISTA', 'CANAL', 'UF', 'PDV', 'DESCRIÇÃO PDV',\n",
|
||
" 'PRODUTO LANÇAMENTO', 'DESCRIÇÃO DO LANÇAMENTO', 'MARCA', 'CURVA',\n",
|
||
" 'CATEGORIA', '% CONSUMIDOR', 'MECANICA CONSUMIDOR', '% REVENDEDOR',\n",
|
||
" 'MECANICA REVENDEDOR', 'TIPO DE PRODUTO', 'IAF', 'FOCO',\n",
|
||
" 'PRODUTO SIMILAR', 'DESCRIÇÃO SIMILAR', 'CICLO SIMILAR',\n",
|
||
" 'VENDAS CICLO LANÇAMENTO', 'C-4', 'C-3', 'C-2', 'C-1',\n",
|
||
" 'VENDAS CICLO ATUAL', 'PICO VENDAS SIMILAR ULTIMOS 6 CICLOS',\n",
|
||
" 'PV GINSENG', 'SUGESTÃO METASELLIN', 'SUGESTÃO ABASTECIMENTO',\n",
|
||
" 'SUGESTÃO COMERCIAL'],\n",
|
||
" dtype='object')"
|
||
]
|
||
},
|
||
"execution_count": 102,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final.columns"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 103,
|
||
"id": "9b866c74",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"\n",
|
||
"# lista de colunas numéricas\n",
|
||
"numeric_cols = [\n",
|
||
" 'VENDAS CICLO LANÇAMENTO', 'C-4', 'C-3', 'C-2', 'C-1',\n",
|
||
" 'VENDAS CICLO ATUAL', 'PICO VENDAS SIMILAR ULTIMOS 6 CICLOS',\n",
|
||
" 'PV GINSENG', 'SUGESTÃO METASELLIN', 'SUGESTÃO ABASTECIMENTO',\n",
|
||
" 'SUGESTÃO COMERCIAL'\n",
|
||
"]\n",
|
||
"\n",
|
||
"# colunas não numéricas = todas menos as numéricas\n",
|
||
"non_numeric_cols = [col for col in df_final.columns if col not in numeric_cols]\n",
|
||
"\n",
|
||
"# agrupar por todas as não numéricas, pegando o máximo das numéricas\n",
|
||
"df_final_sem_dupli = (\n",
|
||
" df_final\n",
|
||
" .groupby(non_numeric_cols, as_index=False)[numeric_cols]\n",
|
||
" .sum()\n",
|
||
")\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 104,
|
||
"id": "88d0d6de",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"['C:',\n",
|
||
" 'Users',\n",
|
||
" 'joao.herculano',\n",
|
||
" 'GRUPO GINSENG',\n",
|
||
" 'Assistência Suprimentos - 2025',\n",
|
||
" 'SUPRIMENTOS',\n",
|
||
" 'BD_LANÇAMENTOS',\n",
|
||
" 'BOT',\n",
|
||
" 'BOT - C17',\n",
|
||
" 'arquivos para geração da sugestão']"
|
||
]
|
||
},
|
||
"execution_count": 104,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"arquivo_similares.split('\\\\')[0:-2]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 105,
|
||
"id": "03af489b",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"'C:\\\\Users\\\\joao.herculano\\\\GRUPO GINSENG\\\\Assistência Suprimentos - 2025\\\\SUPRIMENTOS\\\\BD_LANÇAMENTOS\\\\BOT\\\\BOT - C17\\\\arquivos para geração da sugestão'"
|
||
]
|
||
},
|
||
"execution_count": 105,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"caminho_out =arquivo_similares.split('\\\\')[0:-2]\n",
|
||
"\n",
|
||
"resultado_out = \"\\\\\".join(caminho_out)\n",
|
||
"resultado_out"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 106,
|
||
"id": "8fdb44f5",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"CURVA\n",
|
||
"B 63\n",
|
||
"A 10\n",
|
||
"C 2\n",
|
||
"0 1\n",
|
||
"Name: count, dtype: int64"
|
||
]
|
||
},
|
||
"execution_count": 106,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final_sem_dupli['CURVA'].value_counts()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 107,
|
||
"id": "c69f7a57",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_final_sem_dupli['CURVA'] = df_final_sem_dupli['CURVA'].astype('str')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 108,
|
||
"id": "56d7ec83",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df_final_sem_dupli['CURVA'] = df_final_sem_dupli['CURVA'].str.replace('0','E')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 109,
|
||
"id": "231f00a0",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"CURVA\n",
|
||
"B 63\n",
|
||
"A 10\n",
|
||
"C 2\n",
|
||
"E 1\n",
|
||
"Name: count, dtype: int64"
|
||
]
|
||
},
|
||
"execution_count": 109,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df_final_sem_dupli['CURVA'].value_counts()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 110,
|
||
"id": "2df3e2e9",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"#df_final_sem_dupli.to_excel(f'{resultado_out}\\\\LANCAMENTO_{hoje}.xlsx',index=False)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 111,
|
||
"id": "b1566a14",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Export to Excel\n",
|
||
"output_file = f'{resultado_out}\\\\LANCAMENTO_{hoje}.xlsx'\n",
|
||
"with pd.ExcelWriter(output_file, engine='openpyxl') as writer:\n",
|
||
" df_final_sem_dupli.to_excel(writer, index=False)\n",
|
||
"\n",
|
||
"# Apply styles\n",
|
||
"wb = load_workbook(output_file)\n",
|
||
"ws = wb['Sheet1']\n",
|
||
"\n",
|
||
"# Style header\n",
|
||
"header_fill = PatternFill(start_color='366092', end_color='366092', fill_type='solid') # Light Blue\n",
|
||
"header_font = Font(color='FFFFFF', bold=True) # White & Bold\n",
|
||
"\n",
|
||
"for cell in ws[1]:\n",
|
||
" cell.fill = header_fill\n",
|
||
" cell.font = header_font\n",
|
||
"\n",
|
||
"# Style rows: gray/white alternating\n",
|
||
"gray_fill = PatternFill(start_color='DDDDDD', end_color='DDDDDD', fill_type='solid') # Light gray\n",
|
||
"\n",
|
||
"for i, row in enumerate(ws.iter_rows(min_row=2, max_row=ws.max_row), start=2):\n",
|
||
" if i % 2 == 0:\n",
|
||
" for cell in row:\n",
|
||
" cell.fill = gray_fill\n",
|
||
"\n",
|
||
"# Save styled workbook\n",
|
||
"wb.save(output_file)"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.13.2"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|